The block allocator is an area where inferred block counts (when
cfg.block_count=0) are more likely to cause problems.
As is shown by the recent divide-by-zero-exhaustion issue.
This extends lfs_fs_gc to now handle three things:
1. Calls mkconsistent if not already consistent
2. Compacts metadata > compact_thresh
3. Populates the block allocator
Which should be all of the janitorial work that can be done without
additional on-disk data structures.
Normally, metadata compaction occurs when an mdir is full, and results in
mdirs that are at most block_size/2.
Now, if you call lfs_fs_gc, littlefs will eagerly compact any mdirs that
exceed the compact_thresh configuration option. Because the resulting
mdirs are at most block_size/2, it only makes sense for compact_thresh to
be >= block_size/2 and <= block_size.
Additionally, there are some special values:
- compact_thresh=0 => defaults to ~88% block_size, may change
- compact_thresh=-1 => disables metadata compaction during lfs_fs_gc
Note that compact_thresh only affects lfs_fs_gc. Normal compactions
still only occur when full.
The idea is in the future this function may be extended to support other
block janitorial work. In such a case calling this lfs_fs_gc provides a
more general name that can include other operations.
This is currently just wishful thinking, however.
- Test that the code actually runs.
- Test that lfs_fs_findfreeblocks does not break block allocations.
- Test that lfs_fs_findfreeblocks does not error when no space is
available, it should only errors when the block is actually needed.
In separating the configuration of littlefs from the physical geometry
of the underlying device, we can no longer rely solely on lfs_config to
contain all of the information necessary for the simulated block devices
we use for testing.
This adds a new lfs_*bd_config struct for each of the block devices, and
new erase_size/erase_count fields. The erase_* name was chosen since
these reflect the (simulated) physical erase size and count of
erase-sized blocks, unlike the block_* variants which represent logical
block sizes used for littlefs's bookkeeping.
It may be worth adopting erase_size/erase_count in littlefs's config at
some point in the future, but at the moment doesn't seem necessary.
Changing the lfs_bd_config structs to be required is probably a good
idea anyways, as it moves us more towards separating the bds from
littlefs. Though we can't quite get rid of the lfs_config parameter
because of the block-device API in lfs_config. Eventually it would be
nice to get rid of it, but that would require API breakage.
These are really just different flavors of test.py and test_runner.c
without support for power-loss testing, but with support for measuring
the cumulative number of bytes read, programmed, and erased.
Note that the existing define parameterization should work perfectly
fine for running benchmarks across various dimensions:
./scripts/bench.py \
runners/bench_runner \
bench_file_read \
-gnor \
-DSIZE='range(0,131072,1024)'
Also added a couple basic benchmarks as a starting point.
The main benefit is small test ids everywhere, though this is with the
downside of needing longer names to properly prefix and avoid
collisions. But this fits into the rest of the scripts with globally
unique names a bit better. This is a C project after all.
The other small benefit is test generators may have an easier time since
per-case symbols can expect to be unique.
This mostly required names for each test case, declarations of
previously-implicit variables since the new test framework is more
conservative with what it declares (the small extra effort to add
declarations is well worth the simplicity and improved readability),
and tweaks to work with not-really-constant defines.
Also renamed test_ -> test, replacing the old ./scripts/test.py,
unfortunately git seems to have had a hard time with this.
Moved .travis.yml over to use the new test framework. A part of this
involved testing all of the configurations ran on the old framework
and deciding which to carry over. The new framework duplicates some of
the cases tested by the configurations so some configurations could be
dropped.
The .travis.yml includes some extreme ones, such as no inline files,
relocations every cycle, no intrinsics, power-loss every byte, unaligned
block_count and lookahead, and odd read_sizes.
There were several configurations were some tests failed because of
limitations in the tests themselves, so many conditions were added
to make sure the configurations can run on as many tests as possible.
Fixes:
- Fixed reproducability issue when we can't read a directory revision
- Fixed incorrect erase assumption if lfs_dir_fetch exceeds block size
- Fixed cleanup issue caused by lfs_fs_relocate failing when trying to
outline a file in lfs_file_sync
- Fixed cleanup issue if we run out of space while extending a CTZ skip-list
- Fixed missing half-orphans when allocating blocks during lfs_fs_deorphan
Also:
- Added cycle-detection to readtree.py
- Allowed pseudo-C expressions in test conditions (and it's
beautifully hacky, see line 187 of test.py)
- Better handling of ctrl-C during test runs
- Added build-only mode to test.py
- Limited stdout of test failures to 5 lines unless in verbose mode
Explanation of fixes below
1. Fixed reproducability issue when we can't read a directory revision
An interesting subtlety of the block-device layer is that the
block-device is allowed to return LFS_ERR_CORRUPT on reads to
untouched blocks. This can easily happen if a user is using ECC or
some sort of CMAC on their blocks. Normally we never run into this,
except for the optimization around directory revisions where we use
uninitialized data to start our revision count.
We correctly handle this case by ignoring whats on disk if the read
fails, but end up using unitialized RAM instead. This is not an issue
for normal use, though it can lead to a small information leak.
However it creates a big problem for reproducability, which is very
helpful for debugging.
I ended up running into a case where the RAM values for the revision
count was different, causing two identical runs to wear-level at
different times, leading to one version running out of space before a
bug occured because it expanded the superblock early.
2. Fixed incorrect erase assumption if lfs_dir_fetch exceeds block size
This could be caused if the previous tag was a valid commit and we
lost power causing a partially written tag as the start of a new
commit.
Fortunately we already have a separate condition for exceeding the
block size, so we can force that case to always treat the mdir as
unerased.
3. Fixed cleanup issue caused by lfs_fs_relocate failing when trying to
outline a file in lfs_file_sync
Most operations involving metadata-pairs treat the mdir struct as
entirely temporary and throw it out if any error occurs. Except for
lfs_file_sync since the mdir is also a part of the file struct.
This is relevant because of a cleanup issue in lfs_dir_compact that
usually doesn't have side-effects. The issue is that lfs_fs_relocate
can fail. It needs to allocate new blocks to relocate to, and as the
disk reaches its end of life, it can fail with ENOSPC quite often.
If lfs_fs_relocate fails, the containing lfs_dir_compact would return
immediately without restoring the previous state of the mdir. If a new
commit comes in on the same mdir, the old state left there could
corrupt the filesystem.
It's interesting to note this is forced to happen in lfs_file_sync,
since it always tries to outline the file if it gets ENOSPC (ENOSPC
can mean both no blocks to allocate and that the mdir is full). I'm
not actually sure this bit of code is necessary anymore, we may be
able to remove it.
4. Fixed cleanup issue if we run out of space while extending a CTZ
skip-list
The actually CTZ skip-list logic itself hasn't been touched in more
than a year at this point, so I was surprised to find a bug here. But
it turns out the CTZ skip-list could be put in an invalid state if we
run out of space while trying to extend the skip-list.
This only becomes a problem if we keep the file open, clean up some
space elsewhere, and then continue to write to the open file without
modifying it. Fortunately an easy fix.
5. Fixed missing half-orphans when allocating blocks during
lfs_fs_deorphan
This was a really interesting bug. Normally, we don't have to worry
about allocations, since we force consistency before we are allowed
to allocate blocks. But what about the deorphan operation itself?
Don't we need to allocate blocks if we relocate while deorphaning?
It turns out the deorphan operation can lead to allocating blocks
while there's still orphans and half-orphans on the threaded
linked-list. Orphans aren't an issue, but half-orphans may contain
references to blocks in the outdated half, which doesn't get scanned
during the normal allocation pass.
Fortunately we already fetch directory entries to check CTZ lists, so
we can also check half-orphans here. However this causes
lfs_fs_traverse to duplicate all metadata-pairs, not sure what to do
about this yet.
- Removed old tests and test scripts
- Reorganize the block devices to live under one directory
- Plugged new test framework into Makefile
renamed:
- scripts/test_.py -> scripts/test.py
- tests_ -> tests
- {file,ram,test}bd/* -> bd/*
It took a surprising amount of effort to make the Makefile behave since
it turns out the "test_%" rule could override "tests/test_%.toml.test"
which is generated as part of test.py.