littlefs/tests/test_bd.toml
Christopher Haster 11d6d1251e Dropped namespacing of test cases
The main benefit is small test ids everywhere, though this is with the
downside of needing longer names to properly prefix and avoid
collisions. But this fits into the rest of the scripts with globally
unique names a bit better. This is a C project after all.

The other small benefit is test generators may have an easier time since
per-case symbols can expect to be unique.
2022-09-17 03:03:39 -05:00

249 lines
6.7 KiB
C

# These tests don't really test littlefs at all, they are here only to make
# sure the underlying block device is working.
#
# Note we use 251, a prime, in places to avoid aliasing powers of 2.
#
[cases.test_bd_one_block]
defines.READ = ['READ_SIZE', 'BLOCK_SIZE']
defines.PROG = ['PROG_SIZE', 'BLOCK_SIZE']
code = '''
uint8_t buffer[lfs_max(READ, PROG)];
// write data
cfg->erase(cfg, 0) => 0;
for (lfs_off_t i = 0; i < cfg->block_size; i += PROG) {
for (lfs_off_t j = 0; j < PROG; j++) {
buffer[j] = (i+j) % 251;
}
cfg->prog(cfg, 0, i, buffer, PROG) => 0;
}
// read data
for (lfs_off_t i = 0; i < cfg->block_size; i += READ) {
cfg->read(cfg, 0, i, buffer, READ) => 0;
for (lfs_off_t j = 0; j < READ; j++) {
LFS_ASSERT(buffer[j] == (i+j) % 251);
}
}
'''
[cases.test_bd_two_block]
defines.READ = ['READ_SIZE', 'BLOCK_SIZE']
defines.PROG = ['PROG_SIZE', 'BLOCK_SIZE']
code = '''
uint8_t buffer[lfs_max(READ, PROG)];
lfs_block_t block;
// write block 0
block = 0;
cfg->erase(cfg, block) => 0;
for (lfs_off_t i = 0; i < cfg->block_size; i += PROG) {
for (lfs_off_t j = 0; j < PROG; j++) {
buffer[j] = (block+i+j) % 251;
}
cfg->prog(cfg, block, i, buffer, PROG) => 0;
}
// read block 0
block = 0;
for (lfs_off_t i = 0; i < cfg->block_size; i += READ) {
cfg->read(cfg, block, i, buffer, READ) => 0;
for (lfs_off_t j = 0; j < READ; j++) {
LFS_ASSERT(buffer[j] == (block+i+j) % 251);
}
}
// write block 1
block = 1;
cfg->erase(cfg, block) => 0;
for (lfs_off_t i = 0; i < cfg->block_size; i += PROG) {
for (lfs_off_t j = 0; j < PROG; j++) {
buffer[j] = (block+i+j) % 251;
}
cfg->prog(cfg, block, i, buffer, PROG) => 0;
}
// read block 1
block = 1;
for (lfs_off_t i = 0; i < cfg->block_size; i += READ) {
cfg->read(cfg, block, i, buffer, READ) => 0;
for (lfs_off_t j = 0; j < READ; j++) {
LFS_ASSERT(buffer[j] == (block+i+j) % 251);
}
}
// read block 0 again
block = 0;
for (lfs_off_t i = 0; i < cfg->block_size; i += READ) {
cfg->read(cfg, block, i, buffer, READ) => 0;
for (lfs_off_t j = 0; j < READ; j++) {
LFS_ASSERT(buffer[j] == (block+i+j) % 251);
}
}
'''
[cases.test_bd_last_block]
defines.READ = ['READ_SIZE', 'BLOCK_SIZE']
defines.PROG = ['PROG_SIZE', 'BLOCK_SIZE']
code = '''
uint8_t buffer[lfs_max(READ, PROG)];
lfs_block_t block;
// write block 0
block = 0;
cfg->erase(cfg, block) => 0;
for (lfs_off_t i = 0; i < cfg->block_size; i += PROG) {
for (lfs_off_t j = 0; j < PROG; j++) {
buffer[j] = (block+i+j) % 251;
}
cfg->prog(cfg, block, i, buffer, PROG) => 0;
}
// read block 0
block = 0;
for (lfs_off_t i = 0; i < cfg->block_size; i += READ) {
cfg->read(cfg, block, i, buffer, READ) => 0;
for (lfs_off_t j = 0; j < READ; j++) {
LFS_ASSERT(buffer[j] == (block+i+j) % 251);
}
}
// write block n-1
block = cfg->block_count-1;
cfg->erase(cfg, block) => 0;
for (lfs_off_t i = 0; i < cfg->block_size; i += PROG) {
for (lfs_off_t j = 0; j < PROG; j++) {
buffer[j] = (block+i+j) % 251;
}
cfg->prog(cfg, block, i, buffer, PROG) => 0;
}
// read block n-1
block = cfg->block_count-1;
for (lfs_off_t i = 0; i < cfg->block_size; i += READ) {
cfg->read(cfg, block, i, buffer, READ) => 0;
for (lfs_off_t j = 0; j < READ; j++) {
LFS_ASSERT(buffer[j] == (block+i+j) % 251);
}
}
// read block 0 again
block = 0;
for (lfs_off_t i = 0; i < cfg->block_size; i += READ) {
cfg->read(cfg, block, i, buffer, READ) => 0;
for (lfs_off_t j = 0; j < READ; j++) {
LFS_ASSERT(buffer[j] == (block+i+j) % 251);
}
}
'''
[cases.test_bd_powers_of_two]
defines.READ = ['READ_SIZE', 'BLOCK_SIZE']
defines.PROG = ['PROG_SIZE', 'BLOCK_SIZE']
code = '''
uint8_t buffer[lfs_max(READ, PROG)];
// write/read every power of 2
lfs_block_t block = 1;
while (block < cfg->block_count) {
// write
cfg->erase(cfg, block) => 0;
for (lfs_off_t i = 0; i < cfg->block_size; i += PROG) {
for (lfs_off_t j = 0; j < PROG; j++) {
buffer[j] = (block+i+j) % 251;
}
cfg->prog(cfg, block, i, buffer, PROG) => 0;
}
// read
for (lfs_off_t i = 0; i < cfg->block_size; i += READ) {
cfg->read(cfg, block, i, buffer, READ) => 0;
for (lfs_off_t j = 0; j < READ; j++) {
LFS_ASSERT(buffer[j] == (block+i+j) % 251);
}
}
block *= 2;
}
// read every power of 2 again
block = 1;
while (block < cfg->block_count) {
// read
for (lfs_off_t i = 0; i < cfg->block_size; i += READ) {
cfg->read(cfg, block, i, buffer, READ) => 0;
for (lfs_off_t j = 0; j < READ; j++) {
LFS_ASSERT(buffer[j] == (block+i+j) % 251);
}
}
block *= 2;
}
'''
[cases.test_bd_fibonacci]
defines.READ = ['READ_SIZE', 'BLOCK_SIZE']
defines.PROG = ['PROG_SIZE', 'BLOCK_SIZE']
code = '''
uint8_t buffer[lfs_max(READ, PROG)];
// write/read every fibonacci number on our device
lfs_block_t block = 1;
lfs_block_t block_ = 1;
while (block < cfg->block_count) {
// write
cfg->erase(cfg, block) => 0;
for (lfs_off_t i = 0; i < cfg->block_size; i += PROG) {
for (lfs_off_t j = 0; j < PROG; j++) {
buffer[j] = (block+i+j) % 251;
}
cfg->prog(cfg, block, i, buffer, PROG) => 0;
}
// read
for (lfs_off_t i = 0; i < cfg->block_size; i += READ) {
cfg->read(cfg, block, i, buffer, READ) => 0;
for (lfs_off_t j = 0; j < READ; j++) {
LFS_ASSERT(buffer[j] == (block+i+j) % 251);
}
}
lfs_block_t nblock = block + block_;
block_ = block;
block = nblock;
}
// read every fibonacci number again
block = 1;
block_ = 1;
while (block < cfg->block_count) {
// read
for (lfs_off_t i = 0; i < cfg->block_size; i += READ) {
cfg->read(cfg, block, i, buffer, READ) => 0;
for (lfs_off_t j = 0; j < READ; j++) {
LFS_ASSERT(buffer[j] == (block+i+j) % 251);
}
}
lfs_block_t nblock = block + block_;
block_ = block;
block = nblock;
}
'''