Files
littlefs/tests/test_trvs.toml
Christopher Haster 3b4e1e9e0b gbmap: Renamed gbmap_rebuild_thresh -> gbmap_repop_thresh
And tweaked a few related comments.

I'm still on the fence with this name, I don't think it's great, but it
at least betters describes the "repopulation" operation than
"rebuilding". The important distinction is that we don't throw away
information. Bad/erased block info (future) is still carried over into
the new gbmap snapshot, and persists unless you explicitly call
rmgbmap + mkgbmap.

So, adopting gbmap_repop_thresh for now to see if it's just a habit
thing, but may adopt a different name in the future.

As a plus, gbmap_repop_thresh is two characters shorter.
2025-10-23 23:51:18 -05:00

10262 lines
346 KiB
TOML

# Test incremental traversal things
after = [
'test_dirs',
'test_files',
'test_fwrite',
'test_stickynotes',
'test_alloc'
]
# Test both with and without the gbmap if available
defines.GBMAP = [false, true]
if = '''
LFS3_IFDEF_YES_GBMAP(
GBMAP,
LFS3_IFDEF_GBMAP(true, !GBMAP))
'''
# a simple traversal test
[cases.test_trvs_simple]
defines.MKCONSISTENT = [false, true]
defines.LOOKAHEAD = [false, true]
defines.REPOPGBMAP = [false, true]
defines.COMPACT = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
if = 'GBMAP || !REPOPGBMAP'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((MKCONSISTENT) ? LFS3_T_MKCONSISTENT : 0)
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((REPOPGBMAP)
? LFS3_IFDEF_GBMAP(LFS3_T_REPOPGBMAP, -1)
: 0)
| ((COMPACT) ? LFS3_T_COMPACT : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
'''
# can we rewind?
[cases.test_trvs_rewind]
defines.MKCONSISTENT = [false, true]
defines.LOOKAHEAD = [false, true]
defines.COMPACT = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((MKCONSISTENT) ? LFS3_T_MKCONSISTENT : 0)
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((REPOPGBMAP)
? LFS3_IFDEF_GBMAP(LFS3_T_REPOPGBMAP, -1)
: 0)
| ((COMPACT) ? LFS3_T_COMPACT : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_rewind(&lfs3, &trv) => 0;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
'''
# test that we don't get extra anything after end of traversal
[cases.test_trvs_idempotent]
defines.MKCONSISTENT = [false, true]
defines.LOOKAHEAD = [false, true]
defines.REPOPGBMAP = [false, true]
defines.COMPACT = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
if = 'GBMAP || !REPOPGBMAP'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((MKCONSISTENT) ? LFS3_T_MKCONSISTENT : 0)
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((REPOPGBMAP)
? LFS3_IFDEF_GBMAP(LFS3_T_REPOPGBMAP, -1)
: 0)
| ((COMPACT) ? LFS3_T_COMPACT : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
'''
# some simple traversal tests with clobbering
[cases.test_trvs_clobber_dirs]
defines.N = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many directories
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "dir%03x", i);
lfs3_mkdir(&lfs3, name) => 0;
}
// traverse to find all blocks in use
uint8_t *seen = malloc((BLOCK_COUNT+7)/8);
memset(seen, 0, (BLOCK_COUNT+7)/8);
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDONLY
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
for (lfs3_block_t i = 0;; i++) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
printf("traversal: btype %d block 0x%x\n",
tinfo.btype,
tinfo.block);
assert(tinfo.btype == LFS3_BTYPE_MDIR
|| tinfo.btype == LFS3_BTYPE_BTREE);
// keep track of seen blocks
seen[tinfo.block / 8] |= 1 << (tinfo.block % 8);
}
lfs3_trv_close(&lfs3, &trv) => 0;
// clobber every other block
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
for (lfs3_block_t block = 0; block < BLOCK_COUNT; block++) {
if (!(seen[block / 8] & (1 << (block % 8)))) {
CFG->erase(CFG, block) => 0;
CFG->prog(CFG, block, 0, clobber_buf, BLOCK_SIZE) => 0;
}
}
free(seen);
// then check that we can read our directories after clobbering
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
}
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "dir%03x", i);
struct lfs3_info info;
lfs3_stat(&lfs3, name, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
}
lfs3_dir_t dir;
lfs3_dir_open(&lfs3, &dir, "/") => 0;
struct lfs3_info info;
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, ".") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, "..") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "dir%03x", i);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
}
lfs3_dir_read(&lfs3, &dir, &info) => LFS3_ERR_NOENT;
lfs3_dir_close(&lfs3, &dir) => 0;
}
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_clobber_files]
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'8*BLOCK_SIZE',
]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
if = '(SIZE*N)/BLOCK_SIZE <= 32'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many files
uint32_t prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "file%03x", i);
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
}
// traverse to find all blocks in use
uint8_t *seen = malloc((BLOCK_COUNT+7)/8);
memset(seen, 0, (BLOCK_COUNT+7)/8);
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDONLY
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
for (lfs3_block_t i = 0;; i++) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
printf("traversal: btype %d block 0x%x\n",
tinfo.btype,
tinfo.block);
assert(tinfo.btype == LFS3_BTYPE_MDIR
|| tinfo.btype == LFS3_BTYPE_BTREE
|| tinfo.btype == LFS3_BTYPE_DATA);
// keep track of seen blocks
seen[tinfo.block / 8] |= 1 << (tinfo.block % 8);
}
lfs3_trv_close(&lfs3, &trv) => 0;
// clobber every other block
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
for (lfs3_block_t block = 0; block < BLOCK_COUNT; block++) {
if (!(seen[block / 8] & (1 << (block % 8)))) {
CFG->erase(CFG, block) => 0;
CFG->prog(CFG, block, 0, clobber_buf, BLOCK_SIZE) => 0;
}
}
free(seen);
// then check that reading our files still works after clobbering
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
}
prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
// check with stat
char name[256];
sprintf(name, "file%03x", i);
struct lfs3_info info;
lfs3_stat(&lfs3, name, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_REG);
assert(info.size == SIZE);
// try reading the file, note we reset prng above
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_t file;
uint8_t rbuf[SIZE];
lfs3_file_open(&lfs3, &file, name, LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
}
}
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_clobber_files_opened]
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'8*BLOCK_SIZE',
]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
if = '(SIZE*N)/BLOCK_SIZE <= 32'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many files
lfs3_file_t files[N];
uint32_t prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "file%03x", i);
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_open(&lfs3, &files[i], name,
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_write(&lfs3, &files[i], wbuf, SIZE) => SIZE;
}
// traverse to find all blocks in use
uint8_t *seen = malloc((BLOCK_COUNT+7)/8);
memset(seen, 0, (BLOCK_COUNT+7)/8);
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDONLY
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
for (lfs3_block_t i = 0;; i++) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
printf("traversal: btype %d block 0x%x\n",
tinfo.btype,
tinfo.block);
assert(tinfo.btype == LFS3_BTYPE_MDIR
|| tinfo.btype == LFS3_BTYPE_BTREE
|| tinfo.btype == LFS3_BTYPE_DATA);
// keep track of seen blocks
seen[tinfo.block / 8] |= 1 << (tinfo.block % 8);
}
lfs3_trv_close(&lfs3, &trv) => 0;
// clobber every other block
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
for (lfs3_block_t block = 0; block < BLOCK_COUNT; block++) {
if (!(seen[block / 8] & (1 << (block % 8)))) {
CFG->erase(CFG, block) => 0;
CFG->prog(CFG, block, 0, clobber_buf, BLOCK_SIZE) => 0;
}
}
free(seen);
// then check that reading our files still works after clobbering
prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
// try reading the file, note we reset prng above
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
uint8_t rbuf[SIZE];
lfs3_file_rewind(&lfs3, &files[i]) => 0;
lfs3_file_read(&lfs3, &files[i], rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
}
// and everything is fine after saving the files
for (lfs3_size_t i = 0; i < N; i++) {
lfs3_file_close(&lfs3, &files[i]) => 0;
}
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
}
prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
// check with stat
char name[256];
sprintf(name, "file%03x", i);
struct lfs3_info info;
lfs3_stat(&lfs3, name, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_REG);
assert(info.size == SIZE);
// try reading the file, note we reset prng above
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_t file;
uint8_t rbuf[SIZE];
lfs3_file_open(&lfs3, &file, name, LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
}
}
lfs3_unmount(&lfs3) => 0;
'''
# a bit more aggressive rewind tests
[cases.test_trvs_rewind_clobber_dirs]
defines.N = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many directories
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "dir%03x", i);
lfs3_mkdir(&lfs3, name) => 0;
}
// traverse to find all blocks in use
uint8_t *seen = malloc((BLOCK_COUNT+7)/8);
memset(seen, 0, (BLOCK_COUNT+7)/8);
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDONLY
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
lfs3_block_t r = 0;
for (lfs3_block_t i = 0;; i++) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
if (i == r) {
lfs3_trv_rewind(&lfs3, &trv) => 0;
memset(seen, 0, (BLOCK_COUNT+7)/8);
r += 1;
i = -1;
continue;
}
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
printf("traversal: btype %d block 0x%x\n",
tinfo.btype,
tinfo.block);
assert(tinfo.btype == LFS3_BTYPE_MDIR
|| tinfo.btype == LFS3_BTYPE_BTREE);
// keep track of seen blocks
seen[tinfo.block / 8] |= 1 << (tinfo.block % 8);
}
lfs3_trv_close(&lfs3, &trv) => 0;
// clobber every other block
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
for (lfs3_block_t block = 0; block < BLOCK_COUNT; block++) {
if (!(seen[block / 8] & (1 << (block % 8)))) {
CFG->erase(CFG, block) => 0;
CFG->prog(CFG, block, 0, clobber_buf, BLOCK_SIZE) => 0;
}
}
free(seen);
// then check that we can read our directories after clobbering
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
}
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "dir%03x", i);
struct lfs3_info info;
lfs3_stat(&lfs3, name, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
}
lfs3_dir_t dir;
lfs3_dir_open(&lfs3, &dir, "/") => 0;
struct lfs3_info info;
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, ".") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, "..") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "dir%03x", i);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
}
lfs3_dir_read(&lfs3, &dir, &info) => LFS3_ERR_NOENT;
lfs3_dir_close(&lfs3, &dir) => 0;
}
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_rewind_clobber_files]
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'8*BLOCK_SIZE',
]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
if = '(SIZE*N)/BLOCK_SIZE <= 32'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many files
uint32_t prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "file%03x", i);
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
}
// traverse to find all blocks in use
uint8_t *seen = malloc((BLOCK_COUNT+7)/8);
memset(seen, 0, (BLOCK_COUNT+7)/8);
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDONLY
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
lfs3_block_t r = 0;
for (lfs3_block_t i = 0;; i++) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
if (i == r) {
lfs3_trv_rewind(&lfs3, &trv) => 0;
memset(seen, 0, (BLOCK_COUNT+7)/8);
r += 1;
i = -1;
continue;
}
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
printf("traversal: btype %d block 0x%x\n",
tinfo.btype,
tinfo.block);
assert(tinfo.btype == LFS3_BTYPE_MDIR
|| tinfo.btype == LFS3_BTYPE_BTREE
|| tinfo.btype == LFS3_BTYPE_DATA);
// keep track of seen blocks
seen[tinfo.block / 8] |= 1 << (tinfo.block % 8);
}
lfs3_trv_close(&lfs3, &trv) => 0;
// clobber every other block
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
for (lfs3_block_t block = 0; block < BLOCK_COUNT; block++) {
if (!(seen[block / 8] & (1 << (block % 8)))) {
CFG->erase(CFG, block) => 0;
CFG->prog(CFG, block, 0, clobber_buf, BLOCK_SIZE) => 0;
}
}
free(seen);
// then check that reading our files still works after clobbering
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
}
prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
// check with stat
char name[256];
sprintf(name, "file%03x", i);
struct lfs3_info info;
lfs3_stat(&lfs3, name, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_REG);
assert(info.size == SIZE);
// try reading the file, note we reset prng above
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_t file;
uint8_t rbuf[SIZE];
lfs3_file_open(&lfs3, &file, name, LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
}
}
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_rewind_clobber_files_opened]
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'8*BLOCK_SIZE',
]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
if = '(SIZE*N)/BLOCK_SIZE <= 32'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many files
lfs3_file_t files[N];
uint32_t prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "file%03x", i);
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_open(&lfs3, &files[i], name,
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_write(&lfs3, &files[i], wbuf, SIZE) => SIZE;
}
// traverse to find all blocks in use
uint8_t *seen = malloc((BLOCK_COUNT+7)/8);
memset(seen, 0, (BLOCK_COUNT+7)/8);
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDONLY
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
lfs3_block_t r = 0;
for (lfs3_block_t i = 0;; i++) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
if (i == r) {
lfs3_trv_rewind(&lfs3, &trv) => 0;
memset(seen, 0, (BLOCK_COUNT+7)/8);
r += 1;
i = -1;
continue;
}
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
printf("traversal: btype %d block 0x%x\n",
tinfo.btype,
tinfo.block);
assert(tinfo.btype == LFS3_BTYPE_MDIR
|| tinfo.btype == LFS3_BTYPE_BTREE
|| tinfo.btype == LFS3_BTYPE_DATA);
// keep track of seen blocks
seen[tinfo.block / 8] |= 1 << (tinfo.block % 8);
}
lfs3_trv_close(&lfs3, &trv) => 0;
// clobber every other block
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
for (lfs3_block_t block = 0; block < BLOCK_COUNT; block++) {
if (!(seen[block / 8] & (1 << (block % 8)))) {
CFG->erase(CFG, block) => 0;
CFG->prog(CFG, block, 0, clobber_buf, BLOCK_SIZE) => 0;
}
}
free(seen);
// then check that reading our files still works after clobbering
prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
// try reading the file, note we reset prng above
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
uint8_t rbuf[SIZE];
lfs3_file_rewind(&lfs3, &files[i]) => 0;
lfs3_file_read(&lfs3, &files[i], rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
}
// and everything is fine after saving the files
for (lfs3_size_t i = 0; i < N; i++) {
lfs3_file_close(&lfs3, &files[i]) => 0;
}
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
}
prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
// check with stat
char name[256];
sprintf(name, "file%03x", i);
struct lfs3_info info;
lfs3_stat(&lfs3, name, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_REG);
assert(info.size == SIZE);
// try reading the file, note we reset prng above
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_t file;
uint8_t rbuf[SIZE];
lfs3_file_open(&lfs3, &file, name, LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
}
}
lfs3_unmount(&lfs3) => 0;
'''
# check that we can detect every clobbered mdir
[cases.test_trvs_ckmdir_dirs]
defines.N = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
code = '''
for (lfs3_block_t i = 0;; i += 2) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many directories
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "dir%03x", i);
lfs3_mkdir(&lfs3, name) => 0;
}
// traverse to find blocks
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY) => 0;
lfs3_block_t k = 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
goto done;
}
if (tinfo.btype == LFS3_BTYPE_MDIR) {
if (k == i || k == i+1) {
// clobber this block
printf("clobbering 0x%x\n", tinfo.block);
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
CFG->erase(CFG, tinfo.block) => 0;
CFG->prog(CFG, tinfo.block, 0,
clobber_buf, BLOCK_SIZE) => 0;
if (k == i+1) {
lfs3_trv_close(&lfs3, &trv) => 0;
goto clobbered;
}
}
k += 1;
}
}
clobbered:;
// traverse again, we should detect the clobbered metadata
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY | LFS3_T_CKMETA) => 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_CORRUPT);
// found the clobbered metadata?
if (err == LFS3_ERR_CORRUPT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
}
done:;
'''
[cases.test_trvs_ckmdir_files]
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'8*BLOCK_SIZE',
]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
if = '(SIZE*N)/BLOCK_SIZE <= 32'
code = '''
for (lfs3_block_t i = 0;; i += 2) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many files
uint32_t prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "file%03x", i);
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
}
// traverse to find blocks
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY) => 0;
lfs3_block_t k = 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
goto done;
}
if (tinfo.btype == LFS3_BTYPE_MDIR) {
if (k == i || k == i+1) {
// clobber this block
printf("clobbering 0x%x\n", tinfo.block);
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
CFG->erase(CFG, tinfo.block) => 0;
CFG->prog(CFG, tinfo.block, 0,
clobber_buf, BLOCK_SIZE) => 0;
if (k == i+1) {
lfs3_trv_close(&lfs3, &trv) => 0;
goto clobbered;
}
}
k += 1;
}
}
clobbered:;
// traverse again, we should detect the clobbered metadata
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY | LFS3_T_CKMETA) => 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_CORRUPT);
// found the clobbered metadata?
if (err == LFS3_ERR_CORRUPT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
}
done:;
'''
[cases.test_trvs_ckmdir_files_opened]
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'8*BLOCK_SIZE',
]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
if = '(SIZE*N)/BLOCK_SIZE <= 32'
code = '''
for (lfs3_block_t i = 0;; i += 2) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many files
lfs3_file_t files[N];
uint32_t prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "file%03x", i);
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_open(&lfs3, &files[i], name,
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_write(&lfs3, &files[i], wbuf, SIZE) => SIZE;
}
// traverse to find blocks
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY) => 0;
lfs3_block_t k = 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
lfs3_trv_close(&lfs3, &trv) => 0;
for (lfs3_size_t i = 0; i < N; i++) {
lfs3_file_close(&lfs3, &files[i]) => 0;
}
lfs3_unmount(&lfs3) => 0;
goto done;
}
if (tinfo.btype == LFS3_BTYPE_MDIR) {
if (k == i || k == i+1) {
// clobber this block
printf("clobbering 0x%x\n", tinfo.block);
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
CFG->erase(CFG, tinfo.block) => 0;
CFG->prog(CFG, tinfo.block, 0,
clobber_buf, BLOCK_SIZE) => 0;
if (k == i+1) {
lfs3_trv_close(&lfs3, &trv) => 0;
goto clobbered;
}
}
k += 1;
}
}
clobbered:;
// traverse again, we should detect the clobbered metadata
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY | LFS3_T_CKMETA) => 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_CORRUPT);
// found the clobbered metadata?
if (err == LFS3_ERR_CORRUPT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
for (lfs3_size_t i = 0; i < N; i++) {
lfs3_file_desync(&lfs3, &files[i]) => 0;
lfs3_file_close(&lfs3, &files[i]) => 0;
}
lfs3_unmount(&lfs3) => 0;
}
done:;
'''
# check that we can detect every clobbered btree
[cases.test_trvs_ckbtree_dirs]
defines.N = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
code = '''
for (lfs3_block_t i = 0;; i++) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many directories
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "dir%03x", i);
lfs3_mkdir(&lfs3, name) => 0;
}
// traverse to find blocks
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY) => 0;
lfs3_block_t k = 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
goto done;
}
if (tinfo.btype == LFS3_BTYPE_BTREE) {
if (k == i) {
// clobber this block
printf("clobbering 0x%x\n", tinfo.block);
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
CFG->erase(CFG, tinfo.block) => 0;
CFG->prog(CFG, tinfo.block, 0,
clobber_buf, BLOCK_SIZE) => 0;
lfs3_trv_close(&lfs3, &trv) => 0;
goto clobbered;
}
k += 1;
}
}
clobbered:;
// traverse again, we should detect the clobbered metadata
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY | LFS3_T_CKMETA) => 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_CORRUPT);
// found the clobbered metadata?
if (err == LFS3_ERR_CORRUPT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
}
done:;
'''
[cases.test_trvs_ckbtree_files]
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'8*BLOCK_SIZE',
]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
if = '(SIZE*N)/BLOCK_SIZE <= 32'
code = '''
for (lfs3_block_t i = 0;; i++) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many files
uint32_t prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "file%03x", i);
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
}
// traverse to find blocks
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY) => 0;
lfs3_block_t k = 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
goto done;
}
if (tinfo.btype == LFS3_BTYPE_BTREE) {
if (k == i) {
// clobber this block
printf("clobbering 0x%x\n", tinfo.block);
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
CFG->erase(CFG, tinfo.block) => 0;
CFG->prog(CFG, tinfo.block, 0,
clobber_buf, BLOCK_SIZE) => 0;
lfs3_trv_close(&lfs3, &trv) => 0;
goto clobbered;
}
k += 1;
}
}
clobbered:;
// traverse again, we should detect the clobbered metadata
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY | LFS3_T_CKMETA) => 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_CORRUPT);
// found the clobbered metadata?
if (err == LFS3_ERR_CORRUPT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
}
done:;
'''
[cases.test_trvs_ckbtree_files_opened]
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'8*BLOCK_SIZE',
]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
if = '(SIZE*N)/BLOCK_SIZE <= 32'
code = '''
for (lfs3_block_t i = 0;; i++) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many files
lfs3_file_t files[N];
uint32_t prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "file%03x", i);
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_open(&lfs3, &files[i], name,
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_write(&lfs3, &files[i], wbuf, SIZE) => SIZE;
}
// traverse to find blocks
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY) => 0;
lfs3_block_t k = 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
lfs3_trv_close(&lfs3, &trv) => 0;
for (lfs3_size_t i = 0; i < N; i++) {
lfs3_file_close(&lfs3, &files[i]) => 0;
}
lfs3_unmount(&lfs3) => 0;
goto done;
}
if (tinfo.btype == LFS3_BTYPE_BTREE) {
if (k == i) {
// clobber this block
printf("clobbering 0x%x\n", tinfo.block);
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
CFG->erase(CFG, tinfo.block) => 0;
CFG->prog(CFG, tinfo.block, 0,
clobber_buf, BLOCK_SIZE) => 0;
lfs3_trv_close(&lfs3, &trv) => 0;
goto clobbered;
}
k += 1;
}
}
clobbered:;
// traverse again, we should detect the clobbered metadata
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY | LFS3_T_CKMETA) => 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_CORRUPT);
// found the clobbered metadata?
if (err == LFS3_ERR_CORRUPT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
for (lfs3_size_t i = 0; i < N; i++) {
lfs3_file_desync(&lfs3, &files[i]) => 0;
lfs3_file_close(&lfs3, &files[i]) => 0;
}
lfs3_unmount(&lfs3) => 0;
}
done:;
'''
# check that we can detect every clobbered data block
[cases.test_trvs_ckdata_dirs]
defines.N = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]
code = '''
for (lfs3_block_t i = 0;; i++) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many directories
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "dir%03x", i);
lfs3_mkdir(&lfs3, name) => 0;
}
// traverse to find blocks
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY) => 0;
lfs3_block_t k = 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
goto done;
}
if (tinfo.btype == LFS3_BTYPE_DATA) {
if (k == i) {
// clobber this block
printf("clobbering 0x%x\n", tinfo.block);
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
CFG->erase(CFG, tinfo.block) => 0;
CFG->prog(CFG, tinfo.block, 0,
clobber_buf, BLOCK_SIZE) => 0;
lfs3_trv_close(&lfs3, &trv) => 0;
goto clobbered;
}
k += 1;
}
}
clobbered:;
// traverse again, we should detect the clobbered metadata
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY | LFS3_T_CKDATA) => 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_CORRUPT);
// found the clobbered metadata?
if (err == LFS3_ERR_CORRUPT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
}
done:;
'''
[cases.test_trvs_ckdata_files]
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'8*BLOCK_SIZE',
]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
if = '(SIZE*N)/BLOCK_SIZE <= 32'
code = '''
for (lfs3_block_t i = 0;; i++) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many files
uint32_t prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "file%03x", i);
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
}
// traverse to find blocks
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY) => 0;
lfs3_block_t k = 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
goto done;
}
if (tinfo.btype == LFS3_BTYPE_DATA) {
if (k == i) {
// clobber this block
printf("clobbering 0x%x\n", tinfo.block);
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
CFG->erase(CFG, tinfo.block) => 0;
CFG->prog(CFG, tinfo.block, 0,
clobber_buf, BLOCK_SIZE) => 0;
lfs3_trv_close(&lfs3, &trv) => 0;
goto clobbered;
}
k += 1;
}
}
clobbered:;
// traverse again, we should detect the clobbered metadata
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY | LFS3_T_CKDATA) => 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_CORRUPT);
// found the clobbered metadata?
if (err == LFS3_ERR_CORRUPT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
}
done:;
'''
[cases.test_trvs_ckdata_files_opened]
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'8*BLOCK_SIZE',
]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
if = '(SIZE*N)/BLOCK_SIZE <= 32'
code = '''
for (lfs3_block_t i = 0;; i++) {
// a bit hacky, but this catches infinite loops
assert(i < 2*BLOCK_COUNT);
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create this many files
lfs3_file_t files[N];
uint32_t prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "file%03x", i);
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_open(&lfs3, &files[i], name,
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_write(&lfs3, &files[i], wbuf, SIZE) => SIZE;
}
// traverse to find blocks
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY) => 0;
lfs3_block_t k = 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
lfs3_trv_close(&lfs3, &trv) => 0;
for (lfs3_size_t i = 0; i < N; i++) {
lfs3_file_close(&lfs3, &files[i]) => 0;
}
lfs3_unmount(&lfs3) => 0;
goto done;
}
if (tinfo.btype == LFS3_BTYPE_DATA) {
if (k == i) {
// clobber this block
printf("clobbering 0x%x\n", tinfo.block);
uint8_t clobber_buf[BLOCK_SIZE];
memset(clobber_buf, 0xcc, BLOCK_SIZE);
CFG->erase(CFG, tinfo.block) => 0;
CFG->prog(CFG, tinfo.block, 0,
clobber_buf, BLOCK_SIZE) => 0;
lfs3_trv_close(&lfs3, &trv) => 0;
goto clobbered;
}
k += 1;
}
}
clobbered:;
// traverse again, we should detect the clobbered metadata
lfs3_trv_open(&lfs3, &trv, LFS3_T_RDONLY | LFS3_T_CKDATA) => 0;
for (lfs3_block_t j = 0;; j++) {
assert(j < 2*BLOCK_COUNT);
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_CORRUPT);
// found the clobbered metadata?
if (err == LFS3_ERR_CORRUPT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
for (lfs3_size_t i = 0; i < N; i++) {
lfs3_file_desync(&lfs3, &files[i]) => 0;
lfs3_file_close(&lfs3, &files[i]) => 0;
}
lfs3_unmount(&lfs3) => 0;
}
done:;
'''
# test that in general fsinfo flags work
[cases.test_trvs_flags]
defines.MKCONSISTENT = [false, true]
defines.LOOKAHEAD = [false, true]
defines.REPOPGBMAP = [false, true]
defines.COMPACT = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
if = 'GBMAP || !REPOPGBMAP'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// check flags before
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_MKCONSISTENT
| LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((MKCONSISTENT) ? LFS3_T_MKCONSISTENT : 0)
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((REPOPGBMAP)
? LFS3_IFDEF_GBMAP(LFS3_T_REPOPGBMAP, -1)
: 0)
| ((COMPACT) ? LFS3_T_COMPACT : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// check flags after
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((!MKCONSISTENT) ? LFS3_I_MKCONSISTENT : 0)
| ((!LOOKAHEAD) ? LFS3_I_LOOKAHEAD : 0)
| ((!COMPACT) ? LFS3_I_COMPACT : 0)
// note ckdata implies ckmeta
| ((!CKMETA && !CKDATA) ? LFS3_I_CKMETA : 0)
| ((!CKDATA) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
lfs3_unmount(&lfs3) => 0;
'''
# test that we detect filesystem mutation during traversal
[cases.test_trvs_mutation]
defines.WHEN = [0, 1, 2]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
if (WHEN == 0) {
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
}
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (WHEN == 1) {
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (WHEN == 2) {
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
}
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
lfs3_unmount(&lfs3) => 0;
'''
# test that we don't get extra anything after end of traversal
[cases.test_trvs_mutation_idempotent]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// mutate
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try another mutation just for good measure
lfs3_file_open(&lfs3, &file, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
// we should _not_ update lookahead/compact/ckmeta/ckdata
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mkdir]
defines.WHEN = [0, 1, 2]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
if (WHEN == 0) {
lfs3_mkdir(&lfs3, "spider") => 0;
}
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (WHEN == 1) {
lfs3_mkdir(&lfs3, "spider") => 0;
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (WHEN == 2) {
lfs3_mkdir(&lfs3, "spider") => 0;
}
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_rm]
defines.WHEN = [0, 1, 2]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// make a file
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
if (WHEN == 0) {
lfs3_remove(&lfs3, "spider") => 0;
}
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (WHEN == 1) {
lfs3_remove(&lfs3, "spider") => 0;
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (WHEN == 2) {
lfs3_remove(&lfs3, "spider") => 0;
}
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mv]
defines.WHEN = [0, 1, 2]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// make a file
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
if (WHEN == 0) {
lfs3_rename(&lfs3, "spider", "scorpion") => 0;
}
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (WHEN == 1) {
lfs3_rename(&lfs3, "spider", "scorpion") => 0;
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
if (WHEN == 2) {
lfs3_rename(&lfs3, "spider", "scorpion") => 0;
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
lfs3_unmount(&lfs3) => 0;
'''
# some more complex mutation tests
[cases.test_trvs_mutation_fwrite]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = [
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'8*BLOCK_SIZE',
]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create a file
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
while (true) {
// rewrite the file every step of the traversal
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_TRUNC) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// step traversal
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP && SIZE >= BLOCK_SIZE/4)
? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1)
: 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_fwrite_opened]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = [
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'8*BLOCK_SIZE',
]
defines.SYNC = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create a file
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file) => 0;
if (SYNC) {
lfs3_file_sync(&lfs3, &file) => 0;
}
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
while (true) {
// rewrite the file every step of the traversal
lfs3_file_rewind(&lfs3, &file) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
if (SYNC) {
lfs3_file_sync(&lfs3, &file) => 0;
}
// step traversal
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
// ok we might've updated lookahead if write stayed in cache
((!LOOKAHEAD || SIZE > FILE_CACHE_SIZE || SYNC)
? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP && SIZE >= BLOCK_SIZE/4)
? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1)
: 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_rewind(&lfs3, &file) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
// and after close?
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
# test specific cases where we need to clobber traversals
#
# these assume quite a bit more and may be a bit fragile...
#
[cases.test_trvs_mutation_file_bsprout]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = 'FILE_CACHE_SIZE/2'
defines.TRUNC = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// rewrite the file
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY
| ((TRUNC) ? LFS3_O_TRUNC : 0)) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_file_btree]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
defines.INLINE_SIZE = 0
defines.TRUNC = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse one data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// rewrite the file
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY
| ((TRUNC) ? LFS3_O_TRUNC : 0)) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_file_bshrub]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
defines.TRUNC = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse one data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// rewrite the file
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY
| ((TRUNC) ? LFS3_O_TRUNC : 0)) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_uncreat_bsprout]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = 'FILE_CACHE_SIZE/2'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file2) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// rewrite the file
lfs3_file_rewind(&lfs3, &file1) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file1) => 0;
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
// check the file contents
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_uncreat_btree]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
defines.INLINE_SIZE = 0
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file2) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse one data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// rewrite the file
lfs3_file_rewind(&lfs3, &file1) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file1) => 0;
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
// check the file contents
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_uncreat_bshrub]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file2) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse one data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// rewrite the file
lfs3_file_rewind(&lfs3, &file1) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file1) => 0;
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
// check the file contents
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_close_bsprout]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = 'FILE_CACHE_SIZE/2'
defines.DESYNC = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file2) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// close the file
if (DESYNC) {
lfs3_file_desync(&lfs3, &file1) => 0;
}
lfs3_file_close(&lfs3, &file1) => 0;
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/etc, unless we're desynced
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((DESYNC) ? LFS3_I_MKCONSISTENT : 0)
| ((!(LOOKAHEAD && DESYNC)) ? LFS3_I_LOOKAHEAD : 0)
| LFS3_I_COMPACT
// note ckdata implies ckmeta
| ((!(CKMETA && DESYNC) && !(CKDATA && DESYNC))
? LFS3_I_CKMETA
: 0)
| ((!(CKDATA && DESYNC)) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
lfs3_file_close(&lfs3, &file2) => 0;
// check the file contents
lfs3_file_t file;
if (DESYNC) {
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => LFS3_ERR_NOENT;
} else {
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
}
lfs3_file_open(&lfs3, &file, "tarantula", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_close_btree]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
defines.INLINE_SIZE = 0
defines.DESYNC = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file2) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse one data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// close the file
if (DESYNC) {
lfs3_file_desync(&lfs3, &file1) => 0;
}
lfs3_file_close(&lfs3, &file1) => 0;
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/etc, unless we're desynced
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((DESYNC) ? LFS3_I_MKCONSISTENT : 0)
| ((!(LOOKAHEAD && DESYNC)) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
// note ckdata implies ckmeta
| ((!(CKMETA && DESYNC) && !(CKDATA && DESYNC))
? LFS3_I_CKMETA
: 0)
| ((!(CKDATA && DESYNC)) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
lfs3_file_close(&lfs3, &file2) => 0;
// check the file contents
lfs3_file_t file;
if (DESYNC) {
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => LFS3_ERR_NOENT;
} else {
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
}
lfs3_file_open(&lfs3, &file, "tarantula", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_close_bshrub]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
defines.DESYNC = [false, true]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file2) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse one data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// close the file
if (DESYNC) {
lfs3_file_desync(&lfs3, &file1) => 0;
}
lfs3_file_close(&lfs3, &file1) => 0;
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/etc, unless we're desynced
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((DESYNC) ? LFS3_I_MKCONSISTENT : 0)
| ((!(LOOKAHEAD && DESYNC)) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
// note ckdata implies ckmeta
| ((!(CKMETA && DESYNC) && !(CKDATA && DESYNC))
? LFS3_I_CKMETA
: 0)
| ((!(CKDATA && DESYNC)) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
lfs3_file_close(&lfs3, &file2) => 0;
// check the file contents
lfs3_file_t file;
if (DESYNC) {
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => LFS3_ERR_NOENT;
} else {
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
}
lfs3_file_open(&lfs3, &file, "tarantula", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_rm_bshrub]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse one data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// remove the file
lfs3_remove(&lfs3, "spider") => 0;
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/etc, unless we're desynced
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((DESYNC) ? LFS3_I_MKCONSISTENT : 0)
| ((!(LOOKAHEAD && DESYNC)) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
// note ckdata implies ckmeta
| ((!(CKMETA && DESYNC) && !(CKDATA && DESYNC))
? LFS3_I_CKMETA
: 0)
| ((!(CKDATA && DESYNC)) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => LFS3_ERR_NOENT;
lfs3_file_open(&lfs3, &file, "tarantula", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mv_src_bshrub]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create three files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf3[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf3, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse one data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// rename one file over another
lfs3_rename(&lfs3, "spider", "tarantula") => 0;
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => LFS3_ERR_NOENT;
lfs3_file_open(&lfs3, &file, "tarantula", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf3, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mv_dst_bshrub]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf3[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf3, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse one data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// rename one file over another
lfs3_rename(&lfs3, "tarantula", "spider") => 0;
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula", LFS3_O_RDONLY) => LFS3_ERR_NOENT;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf3, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mroot_split]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// create enough files for mroot to split
lfs3_size_t i = 0;
while (lfs3.mtree.r.weight == 0) {
char name[256];
sprintf(name, "uloborus%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mroot_split_bshrub_l]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create three files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf3[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf3, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse a data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// create enough files for mroot to split
lfs3_size_t i = 0;
while (lfs3.mtree.r.weight == 0) {
char name[256];
sprintf(name, "uloborus%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// traverse another data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "tarantula", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf3, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mroot_split_bshrub_r]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create three files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "zodarion",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf3[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf3, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// and another data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// create enough files for mroot to split
lfs3_size_t i = 0;
while (lfs3.mtree.r.weight == 0) {
char name[256];
sprintf(name, "uloborus%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// traverse another data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "zodarion", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf3, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mroot_extend]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
# force early relocations
defines.BLOCK_RECYCLES = 0
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// rewrite enough files for mroot to extend
while (lfs3.mroot.r.blocks[0] == 0
|| lfs3.mroot.r.blocks[0] == 1) {
lfs3_file_open(&lfs3, &file, "uloborus",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_remove(&lfs3, "uloborus") => 0;
}
// traverse mroot
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mroot_extend_bshrub]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
# force early relocations
defines.BLOCK_RECYCLES = 0
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse a data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// rewrite enough files for mroot to extend
while (lfs3.mroot.r.blocks[0] == 0
|| lfs3.mroot.r.blocks[0] == 1) {
lfs3_file_open(&lfs3, &file, "uloborus",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_remove(&lfs3, "uloborus") => 0;
}
// traverse another data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mroot_relocate]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
# force early relocations
defines.BLOCK_RECYCLES = 0
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// rewrite enough files for mroot to extend
while (lfs3.mroot.r.blocks[0] == 0
|| lfs3.mroot.r.blocks[0] == 1) {
lfs3_file_open(&lfs3, &file, "uloborus",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_remove(&lfs3, "uloborus") => 0;
}
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// rewrite enough files for mroot to relocate
lfs3_block_t orig = lfs3.mroot.r.blocks[0];
while (lfs3.mroot.r.blocks[0] == orig
|| lfs3.mroot.r.blocks[0] == orig) {
lfs3_file_open(&lfs3, &file, "uloborus",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_remove(&lfs3, "uloborus") => 0;
}
// it's a bit unclear if clobbered mroot chain traversals should
// still traverse inlined mroots, so if this breaks in the future
// I wouldn't worry too much about it
//
// traverse mroot
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mroot_relocate_bshrub]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
# force early relocations
defines.BLOCK_RECYCLES = 0
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// rewrite enough files for mroot to extend
while (lfs3.mroot.r.blocks[0] == 0
|| lfs3.mroot.r.blocks[0] == 1) {
lfs3_file_open(&lfs3, &file, "uloborus",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_remove(&lfs3, "uloborus") => 0;
}
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroots
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse a data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// rewrite enough files for mroot to relocate
lfs3_block_t orig = lfs3.mroot.r.blocks[0];
while (lfs3.mroot.r.blocks[0] == orig
|| lfs3.mroot.r.blocks[0] == orig) {
lfs3_file_open(&lfs3, &file, "uloborus",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_remove(&lfs3, "uloborus") => 0;
}
// traverse another data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mtree_split]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create four files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf3[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf3, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf4[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf4[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf4, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// create enough files for mroot to split twice
lfs3_size_t i = 0;
while (lfs3.mtree.r.weight == 0) {
char name[256];
sprintf(name, "tarantula%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
i = 0;
lfs3_size_t orig = lfs3.mtree.r.weight;
while (lfs3.mtree.r.weight == orig) {
char name[256];
sprintf(name, "xnotata%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// create enough files for mdir to split again
i = 0;
orig = lfs3.mtree.r.weight;
while (lfs3.mtree.r.weight == orig) {
char name[256];
sprintf(name, "vulsor%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf3, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf4, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mtree_split_bshrub_l]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create four files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf3[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf3, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf4[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf4[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf4, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// create enough files for mroot to split twice
lfs3_size_t i = 0;
while (lfs3.mtree.r.weight == 0) {
char name[256];
sprintf(name, "tarantula%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
i = 0;
lfs3_size_t orig = lfs3.mtree.r.weight;
while (lfs3.mtree.r.weight == orig) {
char name[256];
sprintf(name, "xnotata%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse mtree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse one data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// create enough files for mdir to split again
i = 0;
orig = lfs3.mtree.r.weight;
while (lfs3.mtree.r.weight == orig) {
char name[256];
sprintf(name, "vulsor%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// traverse another data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf3, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf4, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mtree_split_bshrub_r]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create four files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf3[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf3, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf4[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf4[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf4, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// create enough files for mroot to split twice
lfs3_size_t i = 0;
while (lfs3.mtree.r.weight == 0) {
char name[256];
sprintf(name, "tarantula%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
i = 0;
lfs3_size_t orig = lfs3.mtree.r.weight;
while (lfs3.mtree.r.weight == orig) {
char name[256];
sprintf(name, "xnotata%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse mtree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse one data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// create enough files for mdir to split again
i = 0;
orig = lfs3.mtree.r.weight;
while (lfs3.mtree.r.weight == orig) {
char name[256];
sprintf(name, "vulsor%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// traverse another data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf3, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf4, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mtree_extend]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create four files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf3[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf3, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf4[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf4[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf4, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// create enough files for mroot to split twice
lfs3_size_t i = 0;
while (lfs3.mtree.r.weight == 0) {
char name[256];
sprintf(name, "tarantula%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
i = 0;
lfs3_size_t orig = lfs3.mtree.r.weight;
while (lfs3.mtree.r.weight == orig) {
char name[256];
sprintf(name, "xnotata%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// switch to early relocations after extending
lfs3_unmount(&lfs3) => 0;
struct lfs3_cfg cfg = *CFG;
cfg.block_recycles = 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, &cfg) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// rewrite enough files for mroot to extend
while (lfs3.mroot.r.blocks[0] == 0
|| lfs3.mroot.r.blocks[0] == 1) {
lfs3_file_open(&lfs3, &file, "vulsor",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_remove(&lfs3, "vulsor") => 0;
}
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf3, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf4, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mtree_extend_bshrub]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create four files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf3[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf3, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf4[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf4[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf4, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// create enough files for mroot to split twice
lfs3_size_t i = 0;
while (lfs3.mtree.r.weight == 0) {
char name[256];
sprintf(name, "tarantula%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
i = 0;
lfs3_size_t orig = lfs3.mtree.r.weight;
while (lfs3.mtree.r.weight == orig) {
char name[256];
sprintf(name, "xnotata%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// switch to early relocations after extending
lfs3_unmount(&lfs3) => 0;
struct lfs3_cfg cfg = *CFG;
cfg.block_recycles = 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, &cfg) => 0;
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse mtree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse one data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// rewrite enough files for mroot to extend
while (lfs3.mroot.r.blocks[0] == 0
|| lfs3.mroot.r.blocks[0] == 1) {
lfs3_file_open(&lfs3, &file, "vulsor",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_remove(&lfs3, "vulsor") => 0;
}
// traverse another data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf3, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf4, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mtree_relocate]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
# force early relocations
defines.BLOCK_RECYCLES = 0
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create four files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf3[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf3, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf4[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf4[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf4, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// rewrite enough files for mroot to extend
while (lfs3.mroot.r.blocks[0] == 0
|| lfs3.mroot.r.blocks[0] == 1) {
lfs3_file_open(&lfs3, &file, "vulsor",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_remove(&lfs3, "vulsor") => 0;
}
// create enough files for mroot to split twice
lfs3_size_t i = 0;
while (lfs3.mtree.r.weight == 0) {
char name[256];
sprintf(name, "tarantula%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
i = 0;
lfs3_size_t orig = lfs3.mtree.r.weight;
while (lfs3.mtree.r.weight == orig) {
char name[256];
sprintf(name, "xnotata%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// rewrite enough files for mroot to relocate
orig = lfs3.mroot.r.blocks[0];
while (lfs3.mroot.r.blocks[0] == orig
|| lfs3.mroot.r.blocks[0] == orig) {
lfs3_file_open(&lfs3, &file, "vulsor",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_remove(&lfs3, "vulsor") => 0;
}
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf3, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf4, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mutation_mtree_relocate_bshrub]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = '2*BLOCK_SIZE'
# force early relocations
defines.BLOCK_RECYCLES = 0
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create four files
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "spider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf1, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf2, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf3[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf3, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf4[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf4[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf4, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// rewrite enough files for mroot to extend
while (lfs3.mroot.r.blocks[0] == 0
|| lfs3.mroot.r.blocks[0] == 1) {
lfs3_file_open(&lfs3, &file, "vulsor",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_remove(&lfs3, "vulsor") => 0;
}
// create enough files for mroot to split twice
lfs3_size_t i = 0;
while (lfs3.mtree.r.weight == 0) {
char name[256];
sprintf(name, "tarantula%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
i = 0;
lfs3_size_t orig = lfs3.mtree.r.weight;
while (lfs3.mtree.r.weight == orig) {
char name[256];
sprintf(name, "xnotata%03x", i);
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// try traversing
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroots
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse mtree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse one data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// rewrite enough files for mroot to relocate
orig = lfs3.mroot.r.blocks[0];
while (lfs3.mroot.r.blocks[0] == orig
|| lfs3.mroot.r.blocks[0] == orig) {
lfs3_file_open(&lfs3, &file, "vulsor",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
lfs3_remove(&lfs3, "vulsor") => 0;
}
// traverse another data block
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse two data blocks
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_DATA);
// we should be at end of traversal now
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should _not_ update lookahead/compact/ckmeta/ckdata
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check the file contents
lfs3_file_open(&lfs3, &file, "spider", LFS3_O_RDONLY) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "uloborus", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "wolfspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf3, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_file_open(&lfs3, &file, "yellowcrabspider", LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf4, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
# test traversals with mdir compaction
[cases.test_trvs_compact]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = 'FILE_CACHE_SIZE/2'
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// write to our mdir until >gc_compact_thresh full
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "jellyfish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
// hack, don't use the internals like this
uint8_t wbuf[SIZE];
while ((file.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH) {
lfs3_file_rewind(&lfs3, &file) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file) => 0;
}
// we should be marked as uncompacted
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing and compacting
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_COMPACT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
// mdir should have been compacted
assert((file.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
// but because we mutated, we're still marked as uncompacted
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// running another traversal should clear the uncompacted flag
lfs3_trv_rewind(&lfs3, &trv) => 0;
while (true) {
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
// mdir should have been compacted
assert((file.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
// uncompacted flag should have been cleared
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((!LOOKAHEAD) ? LFS3_I_LOOKAHEAD : 0)
// note ckdata implies ckmeta
| ((!CKMETA && !CKDATA) ? LFS3_I_CKMETA : 0)
| ((!CKDATA) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the file
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file, "jellyfish", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_compact_mrootchain]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = 'FILE_CACHE_SIZE/2'
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
# force early relocations
defines.BLOCK_RECYCLES = 0
in = 'lfs3.c'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// write to our mdir until mroot extends
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "jellyfish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf[SIZE];
while (lfs3.mroot.r.blocks[0] == 0
|| lfs3.mroot.r.blocks[0] == 1) {
lfs3_file_rewind(&lfs3, &file) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file) => 0;
}
// now write to our mdir until mrootanchor >gc_compact_thresh full
while (true) {
// we need internals to check this
lfs3_mdir_t mrootanchor;
lfs3_mdir_fetch(&lfs3, &mrootanchor,
-1, LFS3_MPTR_MROOTANCHOR()) => 0;
if (lfs3_rbyd_eoff(&mrootanchor.r) > GC_COMPACT_THRESH) {
break;
}
lfs3_file_rewind(&lfs3, &file) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file) => 0;
}
// we should be marked as uncompacted
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing and compacting
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_COMPACT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mrootanchor
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse mroot
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
// mrootanchor should have been compacted
lfs3_mdir_t mrootanchor;
lfs3_mdir_fetch(&lfs3, &mrootanchor,
-1, LFS3_MPTR_MROOTANCHOR()) => 0;
assert(lfs3_rbyd_eoff(&mrootanchor.r) <= GC_COMPACT_THRESH);
// but because we mutated, we're still marked as uncompacted
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// running another traversal should clear the uncompacted flag
lfs3_trv_rewind(&lfs3, &trv) => 0;
while (true) {
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
// mrootanchor should have been compacted
lfs3_mdir_fetch(&lfs3, &mrootanchor,
-1, LFS3_MPTR_MROOTANCHOR()) => 0;
assert(lfs3_rbyd_eoff(&mrootanchor.r) <= GC_COMPACT_THRESH);
// uncompacted flag should have been cleared
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((!LOOKAHEAD) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
// note ckdata implies ckmeta
| ((!CKMETA && !CKDATA) ? LFS3_I_CKMETA : 0)
| ((!CKDATA) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the file
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file, "jellyfish", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_compact_mroot_extend]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = 'FILE_CACHE_SIZE/2'
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
# force early relocations
defines.BLOCK_RECYCLES = 0
in = 'lfs3.c'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// write to our mdir until >gc_compact_thresh full
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "jellyfish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
// hack, don't use the internals like this
uint8_t wbuf[SIZE];
while ((file.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH) {
lfs3_file_rewind(&lfs3, &file) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file) => 0;
}
// we should be marked as uncompacted
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing and compacting
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_COMPACT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// it's a bit unclear if we should follow the mroot or stay on the
// mroot anchor during extends, so if this breaks in the future
// I wouldn't worry too much about it
//
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
// mdir should have been compacted
assert((file.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
// but because we mutated, we're still marked as uncompacted
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// running another traversal should clear the uncompacted flag
lfs3_trv_rewind(&lfs3, &trv) => 0;
while (true) {
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
// mdir should have been compacted
assert((file.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
// uncompacted flag should have been cleared
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((!LOOKAHEAD) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
// note ckdata implies ckmeta
| ((!CKMETA && !CKDATA) ? LFS3_I_CKMETA : 0)
| ((!CKDATA) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the file
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file, "jellyfish", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_compact_mroot_split]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = 'FILE_CACHE_SIZE/2'
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
in = 'lfs3.c'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "jellyfish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "octopus",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file2) => 0;
// create enough files to both compact and split
lfs3_size_t i = 0;
while (true) {
// we should not have split yet
assert(lfs3.mtree.r.weight == 0);
// we need internals to check this
lfs3_ssize_t estimate = lfs3_mdir_estimate___(&lfs3,
&file1.b.h.mdir, -1, -1,
NULL);
assert(estimate >= 0);
if ((file1.b.h.mdir.r.eoff & 0x7fffffff) > GC_COMPACT_THRESH
&& estimate > BLOCK_SIZE/2) {
break;
}
char name[256];
sprintf(name, "medusaaaaaaaaaaaaaaaa%03x", i);
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// we should be marked as uncompacted
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing and compacting
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_COMPACT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// should have split, traverse mtree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
// mdirs should have been compacted
assert((file1.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file2.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
// but because we mutated, we're still marked as uncompacted
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// running another traversal should clear the uncompacted flag
lfs3_trv_rewind(&lfs3, &trv) => 0;
while (true) {
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
// mdirs should have been compacted
assert((file1.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file2.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
// uncompacted flag should have been cleared
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((!LOOKAHEAD) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
// note ckdata implies ckmeta
| ((!CKMETA && !CKDATA) ? LFS3_I_CKMETA : 0)
| ((!CKDATA) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the files
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file1, "jellyfish", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file2, "octopus", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file1) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file1, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file2) => 0;
lfs3_file_read(&lfs3, &file2, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_compact_mtree]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = 'FILE_CACHE_SIZE/2'
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
defines.COMPACTSET = 'range(0x8)'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create three files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "cuttlefish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "jellyfish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file2) => 0;
lfs3_file_t file3;
lfs3_file_open(&lfs3, &file3, "octopus",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf3[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file3, wbuf3, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file3) => 0;
// create enough files for mroot to split twice
lfs3_size_t i = 0;
while (lfs3.mtree.r.weight == 0) {
char name[256];
sprintf(name, "hydroid%03x", i);
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
i = 0;
lfs3_size_t orig = lfs3.mtree.r.weight;
while (lfs3.mtree.r.weight == orig) {
char name[256];
sprintf(name, "medusa%03x", i);
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// write to each file until mdir >gc_compact_thresh full
if (COMPACTSET & 0x1) {
// hack, don't use the internals like this
while ((file1.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH) {
lfs3_file_rewind(&lfs3, &file1) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file1) => 0;
}
}
if (COMPACTSET & 0x2) {
// hack, don't use the internals like this
while ((file2.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH) {
lfs3_file_rewind(&lfs3, &file2) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file2) => 0;
}
}
if (COMPACTSET & 0x4) {
// hack, don't use the internals like this
while ((file3.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH) {
lfs3_file_rewind(&lfs3, &file3) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file3, wbuf3, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file3) => 0;
}
}
// we should be marked as uncompacted
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing and compacting
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_COMPACT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse mtree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
if (COMPACTSET) {
// mdirs should have been compacted
assert((file1.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file2.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file3.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
// but because we mutated, we're still marked as uncompacted
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// running another traversal should clear the uncompacted flag
lfs3_trv_rewind(&lfs3, &trv) => 0;
while (true) {
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
// mdirs should have been compacted
assert((file1.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file2.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file3.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
// uncompacted flag should have been cleared
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((!LOOKAHEAD) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
// note ckdata implies ckmeta
| ((!CKMETA && !CKDATA) ? LFS3_I_CKMETA : 0)
| ((!CKDATA) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the files
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_file_close(&lfs3, &file3) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file1, "cuttlefish", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file2, "jellyfish", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file3, "octopus", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file1) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file1, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file2) => 0;
lfs3_file_read(&lfs3, &file2, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file3) => 0;
lfs3_file_read(&lfs3, &file3, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf3, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_file_close(&lfs3, &file3) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_compact_mtree_split]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = 'FILE_CACHE_SIZE/2'
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
in = 'lfs3.c'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create four files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "cuttlefish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "jellyfish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file2) => 0;
lfs3_file_t file3;
lfs3_file_open(&lfs3, &file3, "octopus",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf3[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf3[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file3, wbuf3, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file3) => 0;
lfs3_file_t file4;
lfs3_file_open(&lfs3, &file4, "squid",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf4[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf4[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file4, wbuf4, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file4) => 0;
// create enough files for mroot to split twice
lfs3_size_t i = 0;
while (lfs3.mtree.r.weight == 0) {
char name[256];
sprintf(name, "hydroid%03x", i);
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
i = 0;
lfs3_size_t orig = lfs3.mtree.r.weight;
while (lfs3.mtree.r.weight == orig) {
char name[256];
sprintf(name, "polyp%03x", i);
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// create enough files to both compact and split
i = 0;
orig = lfs3.mtree.r.weight;
while (true) {
// we should not have split yet
assert(lfs3.mtree.r.weight == orig);
// we need internals to check this
lfs3_ssize_t estimate = lfs3_mdir_estimate___(&lfs3,
&file2.b.h.mdir, -1, -1,
NULL);
assert(estimate >= 0);
if ((file2.b.h.mdir.r.eoff & 0x7fffffff) > GC_COMPACT_THRESH
&& estimate > BLOCK_SIZE/2) {
break;
}
char name[256];
sprintf(name, "medusaaaaaaaaaaaaaaaa%03x", i);
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_close(&lfs3, &file) => 0;
i += 1;
}
// we should be marked as uncompacted
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing and compacting
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_COMPACT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// traverse mtree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// should have split, traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse mdir
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
// mdirs should have been compacted
assert((file1.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file2.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file3.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file4.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
// but because we mutated, we're still marked as uncompacted
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// running another traversal should clear the uncompacted flag
lfs3_trv_rewind(&lfs3, &trv) => 0;
while (true) {
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
// mdirs should have been compacted
assert((file1.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file2.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file3.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file4.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
// uncompacted flag should have been cleared
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((!LOOKAHEAD) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
// note ckdata implies ckmeta
| ((!CKMETA && !CKDATA) ? LFS3_I_CKMETA : 0)
| ((!CKDATA) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the files
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_file_close(&lfs3, &file3) => 0;
lfs3_file_close(&lfs3, &file4) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file1, "cuttlefish", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file2, "jellyfish", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file3, "octopus", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file4, "squid", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file1) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file1, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file2) => 0;
lfs3_file_read(&lfs3, &file2, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file3) => 0;
lfs3_file_read(&lfs3, &file3, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf3, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file4) => 0;
lfs3_file_read(&lfs3, &file4, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf4, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_file_close(&lfs3, &file3) => 0;
lfs3_file_close(&lfs3, &file4) => 0;
lfs3_unmount(&lfs3) => 0;
'''
# test traversals with mkconsistent
[cases.test_trvs_mkconsistent]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = 'FILE_CACHE_SIZE/2'
# <=2 => grm-able
# >2 => requires orphans
defines.ORPHANS = [0, 1, 2, 3, 100]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "cuttlefish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "octopus",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file2) => 0;
// create this many orphaned files
//
// anytime we close a not-yet-created desync file, we create an
// orphan, but note we need these to be different files, and we need
// to close them after all open calls, otherwise we just end up with
// one orphan (littlefs is eager to clean up orphans)
//
lfs3_file_t orphans[ORPHANS];
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
char name[256];
sprintf(name, "jellyfish%03x", i);
lfs3_file_open(&lfs3, &orphans[i], name,
LFS3_O_WRONLY
| LFS3_O_CREAT
| LFS3_O_EXCL
| LFS3_O_DESYNC) => 0;
}
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
lfs3_file_close(&lfs3, &orphans[i]) => 0;
}
// we should be marked as inconsistent now
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((ORPHANS > 0) ? LFS3_I_MKCONSISTENT : 0)
| LFS3_I_LOOKAHEAD
| ((GBMAP && ORPHANS >= 100)
? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1)
: 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing with mkconsistent
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_MKCONSISTENT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (ORPHANS > 3) {
// traverse mtree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdirs
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
}
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should have cleaned up all grms/orphans
assert(lfs3.grm.queue[0] == 0);
assert(lfs3.grm.queue[1] == 0);
assert(!(lfs3.flags & LFS3_I_MKCONSISTENT));
// which means there shouldn't be that many files left
assert(lfs3.mtree.r.weight <= (2 << lfs3.mbits));
assert(file1.b.h.mdir.r.weight <= 3);
assert(file2.b.h.mdir.r.weight <= 3);
// and we should be marked as consistent
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((!LOOKAHEAD || ORPHANS > 0) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP && ORPHANS >= 100)
? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1)
: 0)
| LFS3_I_COMPACT
// note ckdata implies ckmeta
| (((!CKMETA && !CKDATA) || ORPHANS > 0) ? LFS3_I_CKMETA : 0)
| ((!CKDATA || ORPHANS > 0) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the files
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file1, "cuttlefish", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file2, "octopus", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file1) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file1, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file2) => 0;
lfs3_file_read(&lfs3, &file2, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mkconsistent_conflict]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = 'FILE_CACHE_SIZE/2'
# <=2 => grm-able
# >2 => requires orphans
defines.ORPHANS = [0, 1, 2, 3, 100]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "cuttlefish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "octopus",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file2) => 0;
// we should not be marked as inconsistent
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing with mkconsistent
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_MKCONSISTENT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// create this many orphaned files
//
// anytime we close a not-yet-created desync file, we create an
// orphan, but note we need these to be different files, and we need
// to close them after all open calls, otherwise we just end up with
// one orphan (littlefs is eager to clean up orphans)
//
lfs3_file_t orphans[ORPHANS];
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
char name[256];
sprintf(name, "jellyfish%03x", i);
lfs3_file_open(&lfs3, &orphans[i], name,
LFS3_O_WRONLY
| LFS3_O_CREAT
| LFS3_O_EXCL
| LFS3_O_DESYNC) => 0;
}
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
lfs3_file_close(&lfs3, &orphans[i]) => 0;
}
// keep traversing
if (ORPHANS <= 3) {
// traverse mroot
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
} else {
// traverse mdirs
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
}
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should be able to clean up grms
assert(lfs3.grm.queue[0] == 0);
assert(lfs3.grm.queue[1] == 0);
// if we introduce actual orphans, me _must not_ clear the orphan flag
if (ORPHANS >= 3) {
assert(lfs3.flags & LFS3_I_MKCONSISTENT);
}
// if we introduced actual orphans, we _must_ be marked as inconsistent
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((ORPHANS >= 3) ? LFS3_I_MKCONSISTENT : 0)
| ((!LOOKAHEAD || ORPHANS > 0) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP && ORPHANS >= 100)
? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1)
: 0)
| LFS3_I_COMPACT
// note ckdata implies ckmeta
| (((!CKMETA && !CKDATA) || ORPHANS > 0) ? LFS3_I_CKMETA : 0)
| ((!CKDATA || ORPHANS > 0) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the files
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file1, "cuttlefish", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file2, "octopus", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file1) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file1, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file2) => 0;
lfs3_file_read(&lfs3, &file2, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mkconsistent_btree]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
# limit files to very simple btrees
defines.INLINE_SIZE = 0
defines.CRYSTAL_THRESH = -1
defines.FRAGMENT_SIZE = 'BLOCK_SIZE/8'
defines.SIZE = '2*FRAGMENT_SIZE'
# <=2 => grm-able
# >2 => requires orphans
defines.ORPHANS = [0, 1, 2, 3, 100]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "cuttlefish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "octopus",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file2) => 0;
// create this many orphaned files
//
// anytime we close a not-yet-created desync file, we create an
// orphan, but note we need these to be different files, and we need
// to close them after all open calls, otherwise we just end up with
// one orphan (littlefs is eager to clean up orphans)
//
lfs3_file_t orphans[ORPHANS];
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
char name[256];
sprintf(name, "jellyfish%03x", i);
lfs3_file_open(&lfs3, &orphans[i], name,
LFS3_O_WRONLY
| LFS3_O_CREAT
| LFS3_O_EXCL
| LFS3_O_DESYNC) => 0;
}
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
lfs3_file_close(&lfs3, &orphans[i]) => 0;
}
// we should be marked as inconsistent now
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((ORPHANS > 0) ? LFS3_I_MKCONSISTENT : 0)
| LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing with mkconsistent
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_MKCONSISTENT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (ORPHANS <= 3) {
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
} else {
// traverse mtree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdirs
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdirs
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
}
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should have cleaned up all grms/orphans
assert(lfs3.grm.queue[0] == 0);
assert(lfs3.grm.queue[1] == 0);
assert(!(lfs3.flags & LFS3_I_MKCONSISTENT));
// which means there shouldn't be that many files left
assert(lfs3.mtree.r.weight <= (2 << lfs3.mbits));
assert(file1.b.h.mdir.r.weight <= 3);
assert(file2.b.h.mdir.r.weight <= 3);
// and we should be marked as consistent
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((!LOOKAHEAD || ORPHANS > 0) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
// note ckdata implies ckmeta
| (((!CKMETA && !CKDATA) || ORPHANS > 0) ? LFS3_I_CKMETA : 0)
| ((!CKDATA || ORPHANS > 0) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the files
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file1, "cuttlefish", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file2, "octopus", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file1) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file1, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file2) => 0;
lfs3_file_read(&lfs3, &file2, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mkconsistent_btree_uncreat]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
# limit files to very simple btrees
defines.INLINE_SIZE = 0
defines.CRYSTAL_THRESH = -1
defines.FRAGMENT_SIZE = 'BLOCK_SIZE/8'
defines.SIZE = '2*FRAGMENT_SIZE'
# <=2 => grm-able
# >2 => requires orphans
defines.ORPHANS = [0, 1, 2, 3, 100]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "cuttlefish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "octopus",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file2) => 0;
// create this many orphaned files
//
// anytime we close a not-yet-created desync file, we create an
// orphan, but note we need these to be different files, and we need
// to close them after all open calls, otherwise we just end up with
// one orphan (littlefs is eager to clean up orphans)
//
lfs3_file_t orphans[ORPHANS];
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
char name[256];
sprintf(name, "jellyfish%03x", i);
lfs3_file_open(&lfs3, &orphans[i], name,
LFS3_O_WRONLY
| LFS3_O_CREAT
| LFS3_O_EXCL
| LFS3_O_DESYNC) => 0;
}
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
lfs3_file_close(&lfs3, &orphans[i]) => 0;
}
// we should be marked as inconsistent now
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((ORPHANS > 0) ? LFS3_I_MKCONSISTENT : 0)
| LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing with mkconsistent
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_MKCONSISTENT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (ORPHANS <= 3) {
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
} else {
// traverse mtree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdirs
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdirs
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse btree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
}
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should have cleaned up all grms/orphans
assert(lfs3.grm.queue[0] == 0);
assert(lfs3.grm.queue[1] == 0);
assert(!(lfs3.flags & LFS3_I_MKCONSISTENT));
// which means there shouldn't be that many files left
assert(lfs3.mtree.r.weight <= (2 << lfs3.mbits));
assert(file1.b.h.mdir.r.weight <= 3);
assert(file2.b.h.mdir.r.weight <= 3);
// and we should be marked as consistent
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((!LOOKAHEAD || ORPHANS > 0) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
// note ckdata implies ckmeta
| (((!CKMETA && !CKDATA) || ORPHANS > 0) ? LFS3_I_CKMETA : 0)
| ((!CKDATA || ORPHANS > 0) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the files
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file1, "cuttlefish", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file2, "octopus", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file1) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file1, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file2) => 0;
lfs3_file_read(&lfs3, &file2, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mkconsistent_bshrub]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
# this configuration should create a 2-layer bshrub, which may be
# a bit delicate
defines.INLINE_SIZE = 'BLOCK_SIZE/4'
defines.CRYSTAL_THRESH = -1
defines.FRAGMENT_SIZE = 'BLOCK_SIZE/8'
defines.SIZE = 'BLOCK_SIZE'
# <=2 => grm-able
# >2 => requires orphans
defines.ORPHANS = [0, 1, 2, 3, 100]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "cuttlefish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "octopus",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file2) => 0;
// create this many orphaned files
//
// anytime we close a not-yet-created desync file, we create an
// orphan, but note we need these to be different files, and we need
// to close them after all open calls, otherwise we just end up with
// one orphan (littlefs is eager to clean up orphans)
//
lfs3_file_t orphans[ORPHANS];
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
char name[256];
sprintf(name, "jellyfish%03x", i);
lfs3_file_open(&lfs3, &orphans[i], name,
LFS3_O_WRONLY
| LFS3_O_CREAT
| LFS3_O_EXCL
| LFS3_O_DESYNC) => 0;
}
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
lfs3_file_close(&lfs3, &orphans[i]) => 0;
}
// we should be marked as inconsistent now
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((ORPHANS > 0) ? LFS3_I_MKCONSISTENT : 0)
| LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing with mkconsistent
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_MKCONSISTENT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (ORPHANS <= 3) {
// traverse bshrub
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse bshrub
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
} else {
// traverse mtree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdirs
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse bshrub
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdirs
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse bshrub
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
}
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should have cleaned up all grms/orphans
assert(lfs3.grm.queue[0] == 0);
assert(lfs3.grm.queue[1] == 0);
assert(!(lfs3.flags & LFS3_I_MKCONSISTENT));
// which means there shouldn't be that many files left
assert(lfs3.mtree.r.weight <= (2 << lfs3.mbits));
assert(file1.b.h.mdir.r.weight <= 3);
assert(file2.b.h.mdir.r.weight <= 3);
// and we should be marked as consistent
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((!LOOKAHEAD || ORPHANS > 0) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
// note ckdata implies ckmeta
| (((!CKMETA && !CKDATA) || ORPHANS > 0) ? LFS3_I_CKMETA : 0)
| ((!CKDATA || ORPHANS > 0) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the files
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file1, "cuttlefish", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file2, "octopus", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file1) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file1, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file2) => 0;
lfs3_file_read(&lfs3, &file2, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mkconsistent_bshrub_uncreat]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
# this configuration should create a 2-layer bshrub, which may be
# a bit delicate
defines.INLINE_SIZE = 'BLOCK_SIZE/4'
defines.CRYSTAL_THRESH = -1
defines.FRAGMENT_SIZE = 'BLOCK_SIZE/8'
defines.SIZE = 'BLOCK_SIZE'
# <=2 => grm-able
# >2 => requires orphans
defines.ORPHANS = [0, 1, 2, 3, 100]
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "cuttlefish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "octopus",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_flush(&lfs3, &file2) => 0;
// create this many orphaned files
//
// anytime we close a not-yet-created desync file, we create an
// orphan, but note we need these to be different files, and we need
// to close them after all open calls, otherwise we just end up with
// one orphan (littlefs is eager to clean up orphans)
//
lfs3_file_t orphans[ORPHANS];
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
char name[256];
sprintf(name, "jellyfish%03x", i);
lfs3_file_open(&lfs3, &orphans[i], name,
LFS3_O_WRONLY
| LFS3_O_CREAT
| LFS3_O_EXCL
| LFS3_O_DESYNC) => 0;
}
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
lfs3_file_close(&lfs3, &orphans[i]) => 0;
}
// we should be marked as inconsistent now
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((ORPHANS > 0) ? LFS3_I_MKCONSISTENT : 0)
| LFS3_I_LOOKAHEAD
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing with mkconsistent
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_MKCONSISTENT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (ORPHANS <= 3) {
// traverse bshrub
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse bshrub
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
} else {
// traverse mtree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdirs
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse bshrub
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdirs
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
// traverse bshrub
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
}
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should have cleaned up all grms/orphans
assert(lfs3.grm.queue[0] == 0);
assert(lfs3.grm.queue[1] == 0);
assert(!(lfs3.flags & LFS3_I_MKCONSISTENT));
// which means there shouldn't be that many files left
assert(lfs3.mtree.r.weight <= (2 << lfs3.mbits));
assert(file1.b.h.mdir.r.weight <= 3);
assert(file2.b.h.mdir.r.weight <= 3);
// and we should be marked as consistent
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((!LOOKAHEAD || ORPHANS > 0) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1) : 0)
| LFS3_I_COMPACT
// note ckdata implies ckmeta
| (((!CKMETA && !CKDATA) || ORPHANS > 0) ? LFS3_I_CKMETA : 0)
| ((!CKDATA || ORPHANS > 0) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the files
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file1, "cuttlefish", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file2, "octopus", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file1) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file1, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file2) => 0;
lfs3_file_read(&lfs3, &file2, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mkconsistent_compact]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = 'FILE_CACHE_SIZE/2'
# <=2 => grm-able
# >2 => requires orphans
defines.ORPHANS = [0, 1, 2, 3, 100]
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "cuttlefish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "octopus",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file2) => 0;
// create this many orphaned files
//
// anytime we close a not-yet-created desync file, we create an
// orphan, but note we need these to be different files, and we need
// to close them after all open calls, otherwise we just end up with
// one orphan (littlefs is eager to clean up orphans)
//
lfs3_file_t orphans[ORPHANS];
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
char name[256];
sprintf(name, "jellyfish%03x", i);
lfs3_file_open(&lfs3, &orphans[i], name,
LFS3_O_WRONLY
| LFS3_O_CREAT
| LFS3_O_EXCL
| LFS3_O_DESYNC) => 0;
}
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
lfs3_file_close(&lfs3, &orphans[i]) => 0;
}
// write to our mdirs until >gc_compact_thresh full
//
// hack, don't use the internals like this
while ((file1.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH) {
lfs3_file_rewind(&lfs3, &file1) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file1) => 0;
}
while ((file2.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH) {
lfs3_file_rewind(&lfs3, &file2) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file2) => 0;
}
// we should be marked as inconsistent and uncompacted
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((ORPHANS > 0) ? LFS3_I_MKCONSISTENT : 0)
| LFS3_I_LOOKAHEAD
| ((GBMAP && ORPHANS >= 100)
? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1)
: 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing with mkconsistent
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_MKCONSISTENT
| LFS3_T_COMPACT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
if (ORPHANS > 3) {
// traverse mtree
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
// traverse mdirs
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
}
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
// we should have cleaned up all grms/orphans
assert(lfs3.grm.queue[0] == 0);
assert(lfs3.grm.queue[1] == 0);
assert(!(lfs3.flags & LFS3_I_MKCONSISTENT));
// which means there shouldn't be that many files left
assert(lfs3.mtree.r.weight <= (2 << lfs3.mbits));
assert(file1.b.h.mdir.r.weight <= 3);
assert(file2.b.h.mdir.r.weight <= 3);
// mdirs should have been compacted
assert((file1.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file2.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
// we should be marked as consistent, but because we mutated, we're
// still marked as uncompacted
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| ((GBMAP && ORPHANS >= 100)
? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1)
: 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// running another traversal should clear the uncompacted flag
lfs3_trv_rewind(&lfs3, &trv) => 0;
while (true) {
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
if (err == LFS3_ERR_NOENT) {
break;
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
// mdirs should have been compacted
assert((file1.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file2.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
// uncompacted flag should have been cleared
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((!LOOKAHEAD) ? LFS3_I_LOOKAHEAD : 0)
| ((GBMAP && ORPHANS >= 100)
? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1)
: 0)
// note ckdata implies ckmeta
| ((!CKMETA && !CKDATA) ? LFS3_I_CKMETA : 0)
| ((!CKDATA) ? LFS3_I_CKDATA : 0)
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the files
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file1, "cuttlefish", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file2, "octopus", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file1) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file1, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file2) => 0;
lfs3_file_read(&lfs3, &file2, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_mkconsistent_compact_conflict]
defines.LOOKAHEAD = [false, true]
defines.CKMETA = [false, true]
defines.CKDATA = [false, true]
defines.SIZE = 'FILE_CACHE_SIZE/2'
# <=2 => grm-able
# >2 => requires orphans
defines.ORPHANS = [0, 1, 2, 3, 100]
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
code = '''
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
uint32_t prng = 42;
// create two files
lfs3_file_t file1;
lfs3_file_open(&lfs3, &file1, "cuttlefish",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf1[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file1) => 0;
lfs3_file_t file2;
lfs3_file_open(&lfs3, &file2, "octopus",
LFS3_O_RDWR | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
uint8_t wbuf2[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file2) => 0;
// write to our mdirs until >gc_compact_thresh full
//
// hack, don't use the internals like this
while ((file1.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH) {
lfs3_file_rewind(&lfs3, &file1) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf1[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file1, wbuf1, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file1) => 0;
}
while ((file2.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH) {
lfs3_file_rewind(&lfs3, &file2) => 0;
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf2[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file2, wbuf2, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &file2) => 0;
}
// we should not be marked as inconsistent
struct lfs3_fsinfo fsinfo;
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
LFS3_I_LOOKAHEAD
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// try traversing with mkconsistent
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| LFS3_T_MKCONSISTENT
| LFS3_T_COMPACT
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// traverse mroot
struct lfs3_tinfo tinfo;
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
// create this many orphaned files
//
// anytime we close a not-yet-created desync file, we create an
// orphan, but note we need these to be different files, and we need
// to close them after all open calls, otherwise we just end up with
// one orphan (littlefs is eager to clean up orphans)
//
lfs3_file_t orphans[ORPHANS];
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
char name[256];
sprintf(name, "jellyfish%03x", i);
lfs3_file_open(&lfs3, &orphans[i], name,
LFS3_O_WRONLY
| LFS3_O_CREAT
| LFS3_O_EXCL
| LFS3_O_DESYNC) => 0;
}
for (lfs3_size_t i = 0; i < ORPHANS; i++) {
lfs3_file_close(&lfs3, &orphans[i]) => 0;
}
// keep traversing
if (ORPHANS <= 3) {
// traverse mroot
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
assert(tinfo.block == 0 || tinfo.block == 1);
} else {
// traverse mdirs
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_MDIR);
}
if (GBMAP) {
lfs3_trv_read(&lfs3, &trv, &tinfo) => 0;
assert(tinfo.btype == LFS3_BTYPE_BTREE);
assert(tinfo.block == 2);
}
lfs3_trv_read(&lfs3, &trv, &tinfo) => LFS3_ERR_NOENT;
lfs3_trv_close(&lfs3, &trv) => 0;
// we should be able to clean up grms
assert(lfs3.grm.queue[0] == 0);
assert(lfs3.grm.queue[1] == 0);
// if we introduce actual orphans, me _must not_ clear the orphan flag
if (ORPHANS >= 3) {
assert(lfs3.flags & LFS3_I_MKCONSISTENT);
}
// mdirs should have been compacted
assert((file1.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
assert((file2.b.h.mdir.r.eoff & 0x7fffffff) <= GC_COMPACT_THRESH);
// if we introduced actual orphans, we _must_ be marked as inconsistent
lfs3_fs_stat(&lfs3, &fsinfo) => 0;
assert(fsinfo.flags == (
((ORPHANS >= 3) ? LFS3_I_MKCONSISTENT : 0)
| LFS3_I_LOOKAHEAD
| ((GBMAP && ORPHANS >= 100)
? LFS3_IFDEF_GBMAP(LFS3_I_REPOPGBMAP, -1)
: 0)
| LFS3_I_COMPACT
| LFS3_I_CKMETA
| LFS3_I_CKDATA
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_I_GBMAP, -1) : 0)));
// check we can still read the files
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
lfs3_file_open(&lfs3, &file1, "cuttlefish", LFS3_O_RDONLY) => 0;
lfs3_file_open(&lfs3, &file2, "octopus", LFS3_O_RDONLY) => 0;
}
lfs3_file_rewind(&lfs3, &file1) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file1, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf1, SIZE) == 0);
lfs3_file_rewind(&lfs3, &file2) => 0;
lfs3_file_read(&lfs3, &file2, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf2, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file1) => 0;
lfs3_file_close(&lfs3, &file2) => 0;
lfs3_unmount(&lfs3) => 0;
'''
# many/fuzz tests mixed with traversals
#
# these should hopefully test a bunch of messy traversal state
#
[cases.test_trvs_spam_dir_many]
# traverse steps between each op
defines.STEPS = [1, 2, 4, 8, 16, 32, 64, 128]
defines.MKCONSISTENT = [false, true]
defines.LOOKAHEAD = [false, true]
defines.REPOPGBMAP = [false, true]
defines.COMPACT = [false, true]
defines.CKMETA = [true]
defines.CKDATA = [true]
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
defines.N = [1, 2, 4, 8, 16, 32, 64, 128, 256]
if = 'GBMAP || !REPOPGBMAP'
code = '''
// test creating directories
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// open a traversal
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((MKCONSISTENT) ? LFS3_T_MKCONSISTENT : 0)
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((REPOPGBMAP)
? LFS3_IFDEF_GBMAP(LFS3_T_REPOPGBMAP, -1)
: 0)
| ((COMPACT) ? LFS3_T_COMPACT : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// make this many directories
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "dir%03x", i);
int err = lfs3_mkdir(&lfs3, name);
assert(!err || (TEST_PLS && err == LFS3_ERR_EXIST));
// step the traversal
for (lfs3_size_t s = 0; s < STEPS; s++) {
struct lfs3_tinfo tinfo;
err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
// restart traversal
if (err == LFS3_ERR_NOENT) {
lfs3_trv_rewind(&lfs3, &trv) => 0;
}
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
}
// grm should be zero here
assert(lfs3.grm_p[0] == 0);
// check that our mkdir worked
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "dir%03x", i);
struct lfs3_info info;
lfs3_stat(&lfs3, name, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
}
lfs3_dir_t dir;
lfs3_dir_open(&lfs3, &dir, "/") => 0;
struct lfs3_info info;
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, ".") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, "..") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "dir%03x", i);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
}
lfs3_dir_read(&lfs3, &dir, &info) => LFS3_ERR_NOENT;
lfs3_dir_close(&lfs3, &dir) => 0;
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "dir%03x", i);
lfs3_dir_open(&lfs3, &dir, name) => 0;
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, ".") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, "..") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
lfs3_dir_read(&lfs3, &dir, &info) => LFS3_ERR_NOENT;
lfs3_dir_close(&lfs3, &dir) => 0;
}
}
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_spam_dir_fuzz]
# traverse steps between each op
defines.STEPS = [1, 2, 4, 8, 16, 32, 64, 128]
defines.MKCONSISTENT = [false, true]
defines.LOOKAHEAD = [false, true]
defines.REPOPGBMAP = [false, true]
defines.COMPACT = [false, true]
defines.CKMETA = [true]
defines.CKDATA = [true]
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
defines.N = [1, 2, 4, 8, 16, 32, 64, 128, 256]
defines.OPS = '2*N'
defines.SEED = 42
fuzz = 'SEED'
if = 'GBMAP || !REPOPGBMAP'
code = '''
// test fuzz with dirs
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// set up a simulation to compare against
lfs3_size_t *sim = malloc(N*sizeof(lfs3_size_t));
lfs3_size_t sim_size = 0;
// open a traversal
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((MKCONSISTENT) ? LFS3_T_MKCONSISTENT : 0)
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((REPOPGBMAP)
? LFS3_IFDEF_GBMAP(LFS3_T_REPOPGBMAP, -1)
: 0)
| ((COMPACT) ? LFS3_T_COMPACT : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
uint32_t prng = SEED;
for (lfs3_size_t i = 0; i < OPS; i++) {
// choose a pseudo-random op, either mkdir, remove, or rename
uint8_t op = TEST_PRNG(&prng) % 3;
if (op == 0 || sim_size == 0) {
// choose a pseudo-random number, truncate to 3 hexadecimals
lfs3_size_t x = TEST_PRNG(&prng) % N;
// insert into our sim
for (lfs3_size_t j = 0;; j++) {
if (j >= sim_size || sim[j] >= x) {
// already seen?
if (j < sim_size && sim[j] == x) {
// do nothing
} else {
// insert
memmove(&sim[j+1], &sim[j],
(sim_size-j)*sizeof(lfs3_size_t));
sim_size += 1;
sim[j] = x;
}
break;
}
}
// create a directory here
char name[256];
sprintf(name, "dir%03x", x);
int err = lfs3_mkdir(&lfs3, name);
assert(!err || err == LFS3_ERR_EXIST);
} else if (op == 1) {
// choose a pseudo-random entry to delete
lfs3_size_t j = TEST_PRNG(&prng) % sim_size;
lfs3_size_t x = sim[j];
// delete from our sim
memmove(&sim[j], &sim[j+1],
(sim_size-(j+1))*sizeof(lfs3_size_t));
sim_size -= 1;
// remove this directory
char name[256];
sprintf(name, "dir%03x", x);
lfs3_remove(&lfs3, name) => 0;
} else {
// choose a pseudo-random entry to rename, and a pseudo-random
// number to rename to
lfs3_size_t j = TEST_PRNG(&prng) % sim_size;
lfs3_size_t x = sim[j];
lfs3_size_t y = TEST_PRNG(&prng) % N;
for (lfs3_size_t k = 0;; k++) {
if (k >= sim_size || sim[k] >= y) {
// already seen and not a noop?
if (k < sim_size && sim[k] == y && x != y) {
// just delete the original entry
memmove(&sim[j], &sim[j+1],
(sim_size-(j+1))*sizeof(lfs3_size_t));
sim_size -= 1;
} else {
// first delete
memmove(&sim[j], &sim[j+1],
(sim_size-(j+1))*sizeof(lfs3_size_t));
if (k > j) {
k -= 1;
}
// then insert
memmove(&sim[k+1], &sim[k],
(sim_size-k)*sizeof(lfs3_size_t));
sim[k] = y;
}
break;
}
}
// rename this directory
char old_name[256];
sprintf(old_name, "dir%03x", x);
char new_name[256];
sprintf(new_name, "dir%03x", y);
lfs3_rename(&lfs3, old_name, new_name) => 0;
}
// step the traversal
for (lfs3_size_t s = 0; s < STEPS; s++) {
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
// restart traversal
if (err == LFS3_ERR_NOENT) {
lfs3_trv_rewind(&lfs3, &trv) => 0;
}
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
}
// grm should be zero here
assert(lfs3.grm_p[0] == 0);
// test that our directories match our simulation
for (lfs3_size_t j = 0; j < sim_size; j++) {
char name[256];
sprintf(name, "dir%03x", sim[j]);
struct lfs3_info info;
lfs3_stat(&lfs3, name, &info) => 0;
char name2[256];
sprintf(name2, "dir%03x", sim[j]);
assert(strcmp(info.name, name2) == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
}
lfs3_dir_t dir;
lfs3_dir_open(&lfs3, &dir, "/") => 0;
struct lfs3_info info;
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, ".") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, "..") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
for (lfs3_size_t j = 0; j < sim_size; j++) {
char name[256];
sprintf(name, "dir%03x", sim[j]);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
}
lfs3_dir_read(&lfs3, &dir, &info) => LFS3_ERR_NOENT;
lfs3_dir_close(&lfs3, &dir) => 0;
}
// clean up sim/lfs3
free(sim);
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_spam_file_many]
# traverse steps between each op
defines.STEPS = [1, 2, 4, 8, 16, 32, 64, 128]
defines.MKCONSISTENT = [false, true]
defines.LOOKAHEAD = [false, true]
defines.REPOPGBMAP = [false, true]
defines.COMPACT = [false, true]
defines.CKMETA = [true]
defines.CKDATA = [true]
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'4*BLOCK_SIZE',
]
if = [
'(SIZE*N)/BLOCK_SIZE <= 32',
'GBMAP || !REPOPGBMAP',
]
code = '''
// test creating files
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// open a traversal
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((MKCONSISTENT) ? LFS3_T_MKCONSISTENT : 0)
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((REPOPGBMAP)
? LFS3_IFDEF_GBMAP(LFS3_T_REPOPGBMAP, -1)
: 0)
| ((COMPACT) ? LFS3_T_COMPACT : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
// create this many files
uint32_t prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
char name[256];
sprintf(name, "amethyst%03x", i);
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// step the traversal
for (lfs3_size_t s = 0; s < STEPS; s++) {
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
// restart traversal
if (err == LFS3_ERR_NOENT) {
lfs3_trv_rewind(&lfs3, &trv) => 0;
}
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
}
// check that our writes worked
prng = 42;
for (lfs3_size_t i = 0; i < N; i++) {
// check with stat
char name[256];
sprintf(name, "amethyst%03x", i);
struct lfs3_info info;
lfs3_stat(&lfs3, name, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_REG);
assert(info.size == SIZE);
// try reading the file, note we reset prng above
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_t file;
uint8_t rbuf[SIZE];
lfs3_file_open(&lfs3, &file, name, LFS3_O_RDONLY) => 0;
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
}
}
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_spam_file_fuzz]
# traverse steps between each op
defines.STEPS = [1, 2, 4, 8, 16, 32, 64, 128]
defines.MKCONSISTENT = [false, true]
defines.LOOKAHEAD = [false, true]
defines.REPOPGBMAP = [false, true]
defines.COMPACT = [false, true]
defines.CKMETA = [true]
defines.CKDATA = [true]
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.OPS = '2*N'
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'4*BLOCK_SIZE',
]
defines.SEED = 42
fuzz = 'SEED'
if = [
'(SIZE*N)/BLOCK_SIZE <= 16',
'GBMAP || !REPOPGBMAP',
]
code = '''
// test fuzz with files
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// set up a simulation to compare against
lfs3_size_t *sim = malloc(N*sizeof(lfs3_size_t));
uint32_t *sim_prngs = malloc(N*sizeof(uint32_t));
lfs3_size_t sim_size = 0;
// open a traversal
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((MKCONSISTENT) ? LFS3_T_MKCONSISTENT : 0)
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((REPOPGBMAP)
? LFS3_IFDEF_GBMAP(LFS3_T_REPOPGBMAP, -1)
: 0)
| ((COMPACT) ? LFS3_T_COMPACT : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
uint32_t prng = SEED;
for (lfs3_size_t i = 0; i < OPS; i++) {
// choose which operation to do
uint8_t op = TEST_PRNG(&prng) % 3;
// creating a new file?
if (op == 0 || sim_size == 0) {
// choose a pseudo-random number
lfs3_size_t x = TEST_PRNG(&prng) % N;
// associate each file with a prng that generates its contents
uint32_t wprng = TEST_PRNG(&prng);
// insert into our sim
for (lfs3_size_t j = 0;; j++) {
if (j >= sim_size || sim[j] >= x) {
// already seen?
if (j < sim_size && sim[j] == x) {
// new prng
sim_prngs[j] = wprng;
} else {
// insert
memmove(&sim[j+1], &sim[j],
(sim_size-j)*sizeof(lfs3_size_t));
memmove(&sim_prngs[j+1], &sim_prngs[j],
(sim_size-j)*sizeof(uint32_t));
sim_size += 1;
sim[j] = x;
sim_prngs[j] = wprng;
}
break;
}
}
// create a file here
char name[256];
sprintf(name, "amethyst%03x", x);
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&wprng) % 26);
}
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name,
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_TRUNC) => 0;
lfs3_file_write(&lfs3, &file, wbuf, SIZE) => SIZE;
lfs3_file_close(&lfs3, &file) => 0;
// deleting a file?
} else if (op == 1) {
// choose a random file to delete
lfs3_size_t j = TEST_PRNG(&prng) % sim_size;
lfs3_size_t x = sim[j];
// delete from our sim
memmove(&sim[j], &sim[j+1],
(sim_size-(j+1))*sizeof(lfs3_size_t));
memmove(&sim_prngs[j], &sim_prngs[j+1],
(sim_size-(j+1))*sizeof(uint32_t));
sim_size -= 1;
// delete this file
char name[256];
sprintf(name, "amethyst%03x", x);
lfs3_remove(&lfs3, name) => 0;
// renaming a file?
} else {
// choose a random file to rename, and a random number to
// rename to
lfs3_size_t j = TEST_PRNG(&prng) % sim_size;
lfs3_size_t x = sim[j];
lfs3_size_t y = TEST_PRNG(&prng) % N;
uint32_t wprng = sim_prngs[j];
// update our sim
for (lfs3_size_t k = 0;; k++) {
if (k >= sim_size || sim[k] >= y) {
// renaming and replacing
if (k < sim_size && sim[k] == y && x != y) {
// delete the original entry
memmove(&sim[j], &sim[j+1],
(sim_size-(j+1))*sizeof(lfs3_size_t));
memmove(&sim_prngs[j], &sim_prngs[j+1],
(sim_size-(j+1))*sizeof(uint32_t));
sim_size -= 1;
if (k > j) {
k -= 1;
}
// update the prng
sim_prngs[k] = wprng;
// just renaming
} else {
// first delete
memmove(&sim[j], &sim[j+1],
(sim_size-(j+1))*sizeof(lfs3_size_t));
memmove(&sim_prngs[j], &sim_prngs[j+1],
(sim_size-(j+1))*sizeof(uint32_t));
if (k > j) {
k -= 1;
}
// then insert
memmove(&sim[k+1], &sim[k],
(sim_size-k)*sizeof(lfs3_size_t));
memmove(&sim_prngs[k+1], &sim_prngs[k],
(sim_size-k)*sizeof(uint32_t));
sim[k] = y;
sim_prngs[k] = wprng;
}
break;
}
}
// rename this file
char old_name[256];
sprintf(old_name, "amethyst%03x", x);
char new_name[256];
sprintf(new_name, "amethyst%03x", y);
lfs3_rename(&lfs3, old_name, new_name) => 0;
}
// step the traversal
for (lfs3_size_t s = 0; s < STEPS; s++) {
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
// restart traversal
if (err == LFS3_ERR_NOENT) {
lfs3_trv_rewind(&lfs3, &trv) => 0;
}
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
}
// check that our files match our simulation
for (lfs3_size_t j = 0; j < sim_size; j++) {
char name[256];
sprintf(name, "amethyst%03x", sim[j]);
struct lfs3_info info;
lfs3_stat(&lfs3, name, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_REG);
assert(info.size == SIZE);
}
lfs3_dir_t dir;
lfs3_dir_open(&lfs3, &dir, "/") => 0;
struct lfs3_info info;
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, ".") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, "..") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
for (lfs3_size_t j = 0; j < sim_size; j++) {
char name[256];
sprintf(name, "amethyst%03x", sim[j]);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, name) == 0);
assert(info.type == LFS3_TYPE_REG);
assert(info.size == SIZE);
}
lfs3_dir_read(&lfs3, &dir, &info) => LFS3_ERR_NOENT;
lfs3_dir_close(&lfs3, &dir) => 0;
// check the file contents
for (lfs3_size_t j = 0; j < sim_size; j++) {
char name[256];
sprintf(name, "amethyst%03x", sim[j]);
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name, LFS3_O_RDONLY) => 0;
uint32_t wprng = sim_prngs[j];
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&wprng) % 26);
}
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
lfs3_file_close(&lfs3, &file) => 0;
}
}
// clean up sim/lfs3
free(sim);
free(sim_prngs);
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_spam_fwrite_fuzz]
# traverse steps between each op
defines.STEPS = [1, 2, 4, 8, 16, 32, 64, 128]
defines.MKCONSISTENT = [false, true]
defines.LOOKAHEAD = [false, true]
defines.REPOPGBMAP = [false, true]
defines.COMPACT = [false, true]
defines.CKMETA = [true]
defines.CKDATA = [true]
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
defines.OPS = 20
defines.SIZE = [
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'4*BLOCK_SIZE',
]
# chunk is more an upper limit here
defines.CHUNK = [32, 8, 1]
# INIT=0 => no init
# INIT=1 => fill with data
# INIT=2 => truncate to size
defines.INIT = [0, 1, 2]
defines.SYNC = [false, true]
defines.SEED = 42
fuzz = 'SEED'
if = [
'CHUNK <= SIZE',
# this just saves testing time
'SIZE <= 4*1024*FRAGMENT_SIZE',
'GBMAP || !REPOPGBMAP',
]
code = '''
// test with complex file writes
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// create a file
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, "hello",
LFS3_O_WRONLY | LFS3_O_CREAT | LFS3_O_EXCL) => 0;
// simulate our file in ram
uint8_t sim[SIZE];
lfs3_off_t size;
uint32_t prng = SEED;
if (INIT == 0) {
memset(sim, 0, SIZE);
size = 0;
} else if (INIT == 1) {
for (lfs3_size_t i = 0; i < SIZE; i++) {
sim[i] = 'a' + (TEST_PRNG(&prng) % 26);
}
lfs3_file_write(&lfs3, &file, sim, SIZE) => SIZE;
size = SIZE;
} else {
memset(sim, 0, SIZE);
lfs3_file_truncate(&lfs3, &file, SIZE) => 0;
size = SIZE;
}
// sync?
if (SYNC) {
lfs3_file_sync(&lfs3, &file) => 0;
}
// open a traversal
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((MKCONSISTENT) ? LFS3_T_MKCONSISTENT : 0)
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((REPOPGBMAP)
? LFS3_IFDEF_GBMAP(LFS3_T_REPOPGBMAP, -1)
: 0)
| ((COMPACT) ? LFS3_T_COMPACT : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
for (lfs3_size_t i = 0; i < OPS; i++) {
// choose a random location
lfs3_off_t off = TEST_PRNG(&prng) % SIZE;
// and a random size, up to the chunk size
lfs3_size_t chunk = lfs3_min(
(TEST_PRNG(&prng) % (CHUNK+1-1)) + 1,
SIZE - off);
// update sim
for (lfs3_size_t j = 0; j < chunk; j++) {
sim[off+j] = 'a' + (TEST_PRNG(&prng) % 26);
}
size = lfs3_max(size, off+chunk);
// update file
lfs3_file_seek(&lfs3, &file, off, LFS3_SEEK_SET) => off;
lfs3_file_write(&lfs3, &file, &sim[off], chunk) => chunk;
// sync?
if (SYNC) {
lfs3_file_sync(&lfs3, &file) => 0;
}
// step the traversal
for (lfs3_size_t s = 0; s < STEPS; s++) {
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
// restart traversal
if (err == LFS3_ERR_NOENT) {
lfs3_trv_rewind(&lfs3, &trv) => 0;
}
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
lfs3_file_close(&lfs3, &file) => 0;
for (int remount = 0; remount < 2; remount++) {
// remount?
if (remount) {
lfs3_unmount(&lfs3) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
}
// check our file with stat
struct lfs3_info info;
lfs3_stat(&lfs3, "hello", &info) => 0;
assert(strcmp(info.name, "hello") == 0);
assert(info.type == LFS3_TYPE_REG);
assert(info.size == size);
// and with dir read
lfs3_dir_t dir;
lfs3_dir_open(&lfs3, &dir, "/") => 0;
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, ".") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, "..") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, "hello") == 0);
assert(info.type == LFS3_TYPE_REG);
assert(info.size == size);
lfs3_dir_read(&lfs3, &dir, &info) => LFS3_ERR_NOENT;
lfs3_dir_close(&lfs3, &dir) => 0;
// try reading our file
lfs3_file_open(&lfs3, &file, "hello", LFS3_O_RDONLY) => 0;
// is size correct?
lfs3_file_size(&lfs3, &file) => size;
// try reading
uint8_t rbuf[2*SIZE];
memset(rbuf, 0xaa, 2*SIZE);
lfs3_file_read(&lfs3, &file, rbuf, 2*SIZE) => size;
// does our file match our simulation?
assert(memcmp(rbuf, sim, size) == 0);
lfs3_file_close(&lfs3, &file) => 0;
}
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_spam_uz_fuzz]
# traverse steps between each op
defines.STEPS = [1, 2, 4, 8, 16, 32, 64, 128]
defines.MKCONSISTENT = [false, true]
defines.LOOKAHEAD = [false, true]
defines.REPOPGBMAP = [false, true]
defines.COMPACT = [false, true]
defines.CKMETA = [true]
defines.CKDATA = [true]
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.OPS = '2*N'
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'4*BLOCK_SIZE',
]
defines.SEED = 42
fuzz = 'SEED'
if = [
'(SIZE*N)/BLOCK_SIZE <= 16',
'GBMAP || !REPOPGBMAP',
]
code = '''
// test with uncreats, zombies, etc
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// set up a simulation to compare against
lfs3_size_t *sim = malloc(N*sizeof(lfs3_size_t));
uint32_t *sim_prngs = malloc(N*sizeof(uint32_t));
bool *sim_isstickys = malloc(N*sizeof(bool));
lfs3_size_t sim_size = 0;
typedef struct sim_file {
lfs3_size_t x;
bool sticky;
bool zombie;
uint32_t prng;
lfs3_file_t file;
} sim_file_t;
sim_file_t **sim_files = malloc(N*sizeof(sim_file_t*));
lfs3_size_t sim_file_count = 0;
// open a traversal
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((MKCONSISTENT) ? LFS3_T_MKCONSISTENT : 0)
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((REPOPGBMAP)
? LFS3_IFDEF_GBMAP(LFS3_T_REPOPGBMAP, -1)
: 0)
| ((COMPACT) ? LFS3_T_COMPACT : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
uint32_t prng = SEED;
for (lfs3_size_t i = 0; i < OPS; i++) {
nonsense:;
// choose which operation to do
uint8_t op = TEST_PRNG(&prng) % 5;
// open a new file?
if (op == 0) {
if (sim_file_count >= N) {
goto nonsense;
}
// choose a pseudo-random number
lfs3_size_t x = TEST_PRNG(&prng) % N;
// already exists?
bool exist = false;
uint32_t wprng = 0;
bool sticky = true;
for (lfs3_size_t j = 0; j < sim_size; j++) {
if (sim[j] == x) {
exist = true;
wprng = sim_prngs[j];
sticky = sim_isstickys[j];
break;
}
}
// choose a random seed if we don't exist
if (!exist) {
wprng = TEST_PRNG(&prng);
sticky = true;
}
lfs3_size_t j = sim_file_count;
sim_files[j] = malloc(sizeof(sim_file_t));
// open the actual file
char name[256];
sprintf(name, "batman%03x", x);
lfs3_file_open(&lfs3, &sim_files[j]->file, name,
LFS3_O_RDWR | LFS3_O_CREAT) => 0;
// write some initial data if we don't exist
if (!exist || sticky) {
uint8_t wbuf[SIZE];
uint32_t wprng_ = wprng;
for (lfs3_size_t k = 0; k < SIZE; k++) {
wbuf[k] = 'a' + (TEST_PRNG(&wprng_) % 26);
}
lfs3_file_write(&lfs3, &sim_files[j]->file, wbuf, SIZE)
=> SIZE;
}
// open in our sim
sim_files[j]->x = x;
sim_files[j]->sticky = sticky;
sim_files[j]->zombie = false;
sim_files[j]->prng = wprng;
sim_file_count++;
// insert into our sim
for (lfs3_size_t k = 0;; k++) {
if (k >= sim_size || sim[k] >= x) {
// already seen?
if (k < sim_size && sim[k] == x) {
// new prng
sim_prngs[k] = wprng;
} else {
// insert
memmove(&sim[k+1], &sim[k],
(sim_size-k)*sizeof(lfs3_size_t));
memmove(&sim_prngs[k+1], &sim_prngs[k],
(sim_size-k)*sizeof(uint32_t));
memmove(&sim_isstickys[k+1], &sim_isstickys[k],
(sim_size-k)*sizeof(bool));
sim_size += 1;
sim[k] = x;
sim_prngs[k] = wprng;
sim_isstickys[k] = sticky;
}
break;
}
}
// write/rewrite a file?
} else if (op == 1) {
if (sim_file_count == 0) {
goto nonsense;
}
// choose a random file handle
lfs3_size_t j = TEST_PRNG(&prng) % sim_file_count;
lfs3_size_t x = sim_files[j]->x;
// choose a random seed
uint32_t wprng = TEST_PRNG(&prng);
// write to the file
lfs3_file_rewind(&lfs3, &sim_files[j]->file) => 0;
uint8_t wbuf[SIZE];
uint32_t wprng_ = wprng;
for (lfs3_size_t k = 0; k < SIZE; k++) {
wbuf[k] = 'a' + (TEST_PRNG(&wprng_) % 26);
}
lfs3_file_write(&lfs3, &sim_files[j]->file, wbuf, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &sim_files[j]->file) => 0;
// update sim
sim_files[j]->prng = wprng;
if (!sim_files[j]->zombie) {
// update in our sim
for (lfs3_size_t k = 0;; k++) {
if (sim[k] == x) {
// new prng
sim_prngs[k] = wprng;
// no longer sticky
sim_isstickys[k] = false;
break;
}
}
// update related sim files
for (lfs3_size_t k = 0; k < sim_file_count; k++) {
if (sim_files[k]->x == x && !sim_files[k]->zombie) {
// new prng
sim_files[k]->prng = wprng;
// no longer sticky
sim_files[k]->sticky = false;
}
}
}
// close a file?
} else if (op == 2) {
if (sim_file_count == 0) {
goto nonsense;
}
// choose a random file handle
lfs3_size_t j = TEST_PRNG(&prng) % sim_file_count;
lfs3_size_t x = sim_files[j]->x;
bool sticky = sim_files[j]->sticky;
bool zombie = sim_files[j]->zombie;
// this doesn't really test anything, but if we don't close
// files eventually everything will end up zombies
// close the file without affected disk
lfs3_file_desync(&lfs3, &sim_files[j]->file) => 0;
lfs3_file_close(&lfs3, &sim_files[j]->file) => 0;
// clobber closed files to try to catch lingering references
memset(&sim_files[j]->file, 0xcc, sizeof(lfs3_file_t));
// remove from list
free(sim_files[j]);
sim_files[j] = sim_files[sim_file_count-1];
sim_file_count -= 1;
// update our sim
if (sticky && !zombie) {
// orphaned?
bool orphan = true;
for (lfs3_size_t k = 0; k < sim_file_count; k++) {
if (sim_files[k]->x == x && !sim_files[k]->zombie) {
orphan = false;
}
}
// if we were never synced, delete from sim
if (orphan) {
for (lfs3_size_t k = 0;; k++) {
if (sim[k] == x) {
memmove(&sim[k], &sim[k+1],
(sim_size-(k+1))*sizeof(lfs3_size_t));
memmove(&sim_prngs[k], &sim_prngs[k+1],
(sim_size-(k+1))*sizeof(uint32_t));
memmove(&sim_isstickys[k], &sim_isstickys[k+1],
(sim_size-(k+1))*sizeof(bool));
sim_size -= 1;
break;
}
}
}
}
// remove a file?
} else if (op == 3) {
if (sim_size == 0) {
goto nonsense;
}
// choose a random file to delete
lfs3_size_t j = TEST_PRNG(&prng) % sim_size;
lfs3_size_t x = sim[j];
// delete this file
char name[256];
sprintf(name, "batman%03x", x);
lfs3_remove(&lfs3, name) => 0;
// delete from our sim
memmove(&sim[j], &sim[j+1],
(sim_size-(j+1))*sizeof(lfs3_size_t));
memmove(&sim_prngs[j], &sim_prngs[j+1],
(sim_size-(j+1))*sizeof(uint32_t));
memmove(&sim_isstickys[j], &sim_isstickys[j+1],
(sim_size-(j+1))*sizeof(bool));
sim_size -= 1;
// mark any related sim files as zombied
for (lfs3_size_t k = 0; k < sim_file_count; k++) {
if (sim_files[k]->x == x) {
sim_files[k]->zombie = true;
}
}
// rename a file?
} else if (op == 4) {
if (sim_size == 0) {
goto nonsense;
}
// choose a random file to rename, and a random number to
// rename to
lfs3_size_t j = TEST_PRNG(&prng) % sim_size;
lfs3_size_t x = sim[j];
lfs3_size_t y = TEST_PRNG(&prng) % N;
uint32_t wprng = sim_prngs[j];
bool sticky = sim_isstickys[j];
// rename this file
char old_name[256];
sprintf(old_name, "batman%03x", x);
char new_name[256];
sprintf(new_name, "batman%03x", y);
lfs3_rename(&lfs3, old_name, new_name) => 0;
// update our sim
for (lfs3_size_t k = 0;; k++) {
if (k >= sim_size || sim[k] >= y) {
// renaming and replacing
if (k < sim_size && sim[k] == y && x != y) {
// delete the original entry
memmove(&sim[j], &sim[j+1],
(sim_size-(j+1))*sizeof(lfs3_size_t));
memmove(&sim_prngs[j], &sim_prngs[j+1],
(sim_size-(j+1))*sizeof(uint32_t));
memmove(&sim_isstickys[j], &sim_isstickys[j+1],
(sim_size-(j+1))*sizeof(bool));
sim_size -= 1;
if (k > j) {
k -= 1;
}
// update the prng/sticky
sim_prngs[k] = wprng;
sim_isstickys[k] = sticky;
// just renaming
} else {
// first delete
memmove(&sim[j], &sim[j+1],
(sim_size-(j+1))*sizeof(lfs3_size_t));
memmove(&sim_prngs[j], &sim_prngs[j+1],
(sim_size-(j+1))*sizeof(uint32_t));
memmove(&sim_isstickys[j], &sim_isstickys[j+1],
(sim_size-(j+1))*sizeof(bool));
if (k > j) {
k -= 1;
}
// then insert
memmove(&sim[k+1], &sim[k],
(sim_size-k)*sizeof(lfs3_size_t));
memmove(&sim_prngs[k+1], &sim_prngs[k],
(sim_size-k)*sizeof(uint32_t));
memmove(&sim_isstickys[k+1], &sim_isstickys[k],
(sim_size-k)*sizeof(bool));
sim[k] = y;
sim_prngs[k] = wprng;
sim_isstickys[k] = sticky;
}
break;
}
}
// update any related sim files
for (lfs3_size_t k = 0; k < sim_file_count; k++) {
// move source files
if (sim_files[k]->x == x) {
sim_files[k]->x = y;
// mark target files as zombied
} else if (sim_files[k]->x == y) {
sim_files[k]->zombie = true;
}
}
}
// step the traversal
for (lfs3_size_t s = 0; s < STEPS; s++) {
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
// restart traversal
if (err == LFS3_ERR_NOENT) {
lfs3_trv_rewind(&lfs3, &trv) => 0;
}
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
// check that disk matches our simulation
for (lfs3_size_t j = 0; j < sim_size; j++) {
char name[256];
sprintf(name, "batman%03x", sim[j]);
struct lfs3_info info;
lfs3_stat(&lfs3, name, &info) => 0;
assert(strcmp(info.name, name) == 0);
if (sim_isstickys[j]) {
assert(info.type == LFS3_TYPE_STICKYNOTE);
assert(info.size == 0);
} else {
assert(info.type == LFS3_TYPE_REG);
assert(info.size == SIZE);
}
}
lfs3_dir_t dir;
lfs3_dir_open(&lfs3, &dir, "/") => 0;
struct lfs3_info info;
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, ".") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, "..") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
for (lfs3_size_t j = 0; j < sim_size; j++) {
char name[256];
sprintf(name, "batman%03x", sim[j]);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, name) == 0);
if (sim_isstickys[j]) {
assert(info.type == LFS3_TYPE_STICKYNOTE);
assert(info.size == 0);
} else {
assert(info.type == LFS3_TYPE_REG);
assert(info.size == SIZE);
}
}
lfs3_dir_read(&lfs3, &dir, &info) => LFS3_ERR_NOENT;
lfs3_dir_close(&lfs3, &dir) => 0;
for (lfs3_size_t j = 0; j < sim_size; j++) {
char name[256];
sprintf(name, "batman%03x", sim[j]);
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name, LFS3_O_RDONLY) => 0;
uint32_t wprng = sim_prngs[j];
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&wprng) % 26);
}
uint8_t rbuf[SIZE];
if (sim_isstickys[j]) {
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => 0;
} else {
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file) => 0;
}
// check that our file handles match our simulation
for (lfs3_size_t j = 0; j < sim_file_count; j++) {
uint32_t wprng = sim_files[j]->prng;
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&wprng) % 26);
}
lfs3_file_rewind(&lfs3, &sim_files[j]->file) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &sim_files[j]->file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
}
// clean up sim/lfs3
free(sim);
free(sim_prngs);
free(sim_isstickys);
for (lfs3_size_t j = 0; j < sim_file_count; j++) {
lfs3_file_close(&lfs3, &sim_files[j]->file) => 0;
free(sim_files[j]);
}
free(sim_files);
lfs3_unmount(&lfs3) => 0;
'''
[cases.test_trvs_spam_uzd_fuzz]
# traverse steps between each op
defines.STEPS = [1, 2, 4, 8, 16, 32, 64, 128]
defines.MKCONSISTENT = [false, true]
defines.LOOKAHEAD = [false, true]
defines.REPOPGBMAP = [false, true]
defines.COMPACT = [false, true]
defines.CKMETA = [true]
defines.CKDATA = [true]
# set compact thresh to minimum
defines.GC_COMPACT_THRESH = 'BLOCK_SIZE/2'
defines.N = [1, 2, 4, 8, 16, 32, 64]
defines.OPS = '2*N'
defines.SIZE = [
'0',
'FILE_CACHE_SIZE/2',
'2*FILE_CACHE_SIZE',
'BLOCK_SIZE/2',
'BLOCK_SIZE',
'2*BLOCK_SIZE',
'4*BLOCK_SIZE',
]
defines.SEED = 42
fuzz = 'SEED'
if = [
'(SIZE*N)/BLOCK_SIZE <= 16',
'GBMAP || !REPOPGBMAP',
]
code = '''
// test with uncreats, zombies, dirs, etc
lfs3_t lfs3;
lfs3_format(&lfs3,
LFS3_F_RDWR
| ((GBMAP) ? LFS3_IFDEF_GBMAP(LFS3_F_GBMAP, -1) : 0),
CFG) => 0;
lfs3_mount(&lfs3, LFS3_M_RDWR, CFG) => 0;
// set up a simulation to compare against
lfs3_size_t *sim = malloc(N*sizeof(lfs3_size_t));
uint32_t *sim_prngs = malloc(N*sizeof(uint32_t));
bool *sim_isstickys = malloc(N*sizeof(bool));
bool *sim_isdirs = malloc(N*sizeof(bool));
lfs3_size_t sim_size = 0;
typedef struct sim_file {
lfs3_size_t x;
bool sticky;
bool zombie;
uint32_t prng;
lfs3_file_t file;
} sim_file_t;
sim_file_t **sim_files = malloc(N*sizeof(sim_file_t*));
lfs3_size_t sim_file_count = 0;
// open a traversal
lfs3_trv_t trv;
lfs3_trv_open(&lfs3, &trv,
LFS3_T_RDWR
| ((MKCONSISTENT) ? LFS3_T_MKCONSISTENT : 0)
| ((LOOKAHEAD) ? LFS3_T_LOOKAHEAD : 0)
| ((REPOPGBMAP)
? LFS3_IFDEF_GBMAP(LFS3_T_REPOPGBMAP, -1)
: 0)
| ((COMPACT) ? LFS3_T_COMPACT : 0)
| ((CKMETA) ? LFS3_T_CKMETA : 0)
| ((CKDATA) ? LFS3_T_CKDATA : 0)) => 0;
uint32_t prng = SEED;
for (lfs3_size_t i = 0; i < OPS; i++) {
nonsense:;
// choose which operation to do
uint8_t op = TEST_PRNG(&prng) % 8;
// open a new file?
if (op == 0) {
if (sim_file_count >= N) {
goto nonsense;
}
// choose a pseudo-random number
lfs3_size_t x = TEST_PRNG(&prng) % N;
// already exists?
bool exist = true;
uint32_t wprng = 0;
bool sticky = true;
for (lfs3_size_t j = 0; j < sim_size; j++) {
if (sim[j] == x) {
if (sim_isdirs[j]) {
goto nonsense;
}
exist = true;
wprng = sim_prngs[j];
sticky = sim_isstickys[j];
break;
}
}
// choose a random seed if we don't exist
if (!exist) {
wprng = TEST_PRNG(&prng);
sticky = true;
}
lfs3_size_t j = sim_file_count;
sim_files[j] = malloc(sizeof(sim_file_t));
// open the actual file
char name[256];
sprintf(name, "batman%03x", x);
lfs3_file_open(&lfs3, &sim_files[j]->file, name,
LFS3_O_RDWR | LFS3_O_CREAT) => 0;
// write some initial data if we don't exist
if (!exist || sticky) {
uint8_t wbuf[SIZE];
uint32_t wprng_ = wprng;
for (lfs3_size_t k = 0; k < SIZE; k++) {
wbuf[k] = 'a' + (TEST_PRNG(&wprng_) % 26);
}
lfs3_file_write(&lfs3, &sim_files[j]->file, wbuf, SIZE)
=> SIZE;
}
// open in our sim
sim_files[j]->x = x;
sim_files[j]->sticky = sticky;
sim_files[j]->zombie = false;
sim_files[j]->prng = wprng;
sim_file_count++;
// insert into our sim
for (lfs3_size_t k = 0;; k++) {
if (k >= sim_size || sim[k] >= x) {
// already seen?
if (k < sim_size && sim[k] == x) {
// new prng
sim_prngs[k] = wprng;
} else {
// insert
memmove(&sim[k+1], &sim[k],
(sim_size-k)*sizeof(lfs3_size_t));
memmove(&sim_prngs[k+1], &sim_prngs[k],
(sim_size-k)*sizeof(uint32_t));
memmove(&sim_isstickys[k+1], &sim_isstickys[k],
(sim_size-k)*sizeof(bool));
memmove(&sim_isdirs[k+1], &sim_isdirs[k],
(sim_size-k)*sizeof(bool));
sim_size += 1;
sim[k] = x;
sim_prngs[k] = wprng;
sim_isstickys[k] = sticky;
sim_isdirs[k] = false;
}
break;
}
}
// write/rewrite a file?
} else if (op == 1) {
if (sim_file_count == 0) {
goto nonsense;
}
// choose a random file handle
lfs3_size_t j = TEST_PRNG(&prng) % sim_file_count;
lfs3_size_t x = sim_files[j]->x;
// choose a random seed
uint32_t wprng = TEST_PRNG(&prng);
// write to the file
lfs3_file_rewind(&lfs3, &sim_files[j]->file) => 0;
uint8_t wbuf[SIZE];
uint32_t wprng_ = wprng;
for (lfs3_size_t k = 0; k < SIZE; k++) {
wbuf[k] = 'a' + (TEST_PRNG(&wprng_) % 26);
}
lfs3_file_write(&lfs3, &sim_files[j]->file, wbuf, SIZE) => SIZE;
lfs3_file_sync(&lfs3, &sim_files[j]->file) => 0;
// update sim
sim_files[j]->prng = wprng;
if (!sim_files[j]->zombie) {
// update in our sim
for (lfs3_size_t k = 0;; k++) {
if (k >= sim_size || sim[k] >= x) {
// new prng
sim_prngs[k] = wprng;
// no longer sticky
sim_isstickys[k] = false;
break;
}
}
// update related sim files
for (lfs3_size_t k = 0; k < sim_file_count; k++) {
if (sim_files[k]->x == x && !sim_files[k]->zombie) {
// new prng
sim_files[k]->prng = wprng;
// no longer sticky
sim_files[k]->sticky = false;
}
}
}
// close a file?
} else if (op == 2) {
if (sim_file_count == 0) {
goto nonsense;
}
// choose a random file handle
lfs3_size_t j = TEST_PRNG(&prng) % sim_file_count;
lfs3_size_t x = sim_files[j]->x;
lfs3_size_t sticky = sim_files[j]->sticky;
lfs3_size_t zombie = sim_files[j]->zombie;
// this doesn't really test anything, but if we don't close
// files eventually everything will end up zombies
// close the file without affected disk
lfs3_file_desync(&lfs3, &sim_files[j]->file) => 0;
lfs3_file_close(&lfs3, &sim_files[j]->file) => 0;
// clobber closed files to try to catch lingering references
memset(&sim_files[j]->file, 0xcc, sizeof(lfs3_file_t));
// remove from list
free(sim_files[j]);
sim_files[j] = sim_files[sim_file_count-1];
sim_file_count -= 1;
// update our sim
if (sticky && !zombie) {
// orphaned?
bool orphan = true;
for (lfs3_size_t k = 0; k < sim_file_count; k++) {
if (sim_files[k]->x == x && !sim_files[k]->zombie) {
orphan = false;
}
}
// if we were never synced, delete from sim
if (orphan) {
for (lfs3_size_t k = 0;; k++) {
if (sim[k] == x) {
memmove(&sim[k], &sim[k+1],
(sim_size-(k+1))*sizeof(lfs3_size_t));
memmove(&sim_prngs[k], &sim_prngs[k+1],
(sim_size-(k+1))*sizeof(uint32_t));
memmove(&sim_isstickys[k], &sim_isstickys[k+1],
(sim_size-(k+1))*sizeof(bool));
memmove(&sim_isdirs[k], &sim_isdirs[k+1],
(sim_size-(k+1))*sizeof(bool));
sim_size -= 1;
break;
}
}
}
}
// remove a file?
} else if (op == 3) {
if (sim_size == 0) {
goto nonsense;
}
// choose a random file to delete
lfs3_size_t j = TEST_PRNG(&prng) % sim_size;
lfs3_size_t x = sim[j];
// delete this file
char name[256];
sprintf(name, "batman%03x", x);
lfs3_remove(&lfs3, name) => 0;
// delete from our sim
memmove(&sim[j], &sim[j+1],
(sim_size-(j+1))*sizeof(lfs3_size_t));
memmove(&sim_prngs[j], &sim_prngs[j+1],
(sim_size-(j+1))*sizeof(uint32_t));
memmove(&sim_isstickys[j], &sim_isstickys[j+1],
(sim_size-(j+1))*sizeof(bool));
memmove(&sim_isdirs[j], &sim_isdirs[j+1],
(sim_size-(j+1))*sizeof(bool));
sim_size -= 1;
// mark any related sim files as zombied
for (lfs3_size_t k = 0; k < sim_file_count; k++) {
if (sim_files[k]->x == x) {
sim_files[k]->zombie = true;
}
}
// rename a file?
} else if (op == 4) {
if (sim_size == 0) {
goto nonsense;
}
// choose a random file to rename, and a random number to
// rename to
lfs3_size_t j = TEST_PRNG(&prng) % sim_size;
lfs3_size_t x = sim[j];
lfs3_size_t y = TEST_PRNG(&prng) % N;
uint32_t wprng = sim_prngs[j];
bool sticky = sim_isstickys[j];
bool dir = sim_isdirs[j];
for (lfs3_size_t k = 0;; k++) {
if (k >= sim_size || sim[k] >= y) {
// renaming and replacing
if (k < sim_size && sim[k] == y && x != y) {
// type mismatch?
if (sim_isdirs[k] != dir) {
goto nonsense;
}
}
break;
}
}
// rename this file
char old_name[256];
sprintf(old_name, "batman%03x", x);
char new_name[256];
sprintf(new_name, "batman%03x", y);
lfs3_rename(&lfs3, old_name, new_name) => 0;
// update our sim
for (lfs3_size_t k = 0;; k++) {
if (k >= sim_size || sim[k] >= y) {
// renaming and replacing
if (k < sim_size && sim[k] == y && x != y) {
// delete the original entry
memmove(&sim[j], &sim[j+1],
(sim_size-(j+1))*sizeof(lfs3_size_t));
memmove(&sim_prngs[j], &sim_prngs[j+1],
(sim_size-(j+1))*sizeof(uint32_t));
memmove(&sim_isstickys[j], &sim_isstickys[j+1],
(sim_size-(j+1))*sizeof(bool));
memmove(&sim_isdirs[j], &sim_isdirs[j+1],
(sim_size-(j+1))*sizeof(bool));
sim_size -= 1;
if (k > j) {
k -= 1;
}
// update the prng/sticky/dir
sim_prngs[k] = wprng;
sim_isstickys[k] = sticky;
sim_isdirs[k] = dir;
// just renaming
} else {
// first delete
memmove(&sim[j], &sim[j+1],
(sim_size-(j+1))*sizeof(lfs3_size_t));
memmove(&sim_prngs[j], &sim_prngs[j+1],
(sim_size-(j+1))*sizeof(uint32_t));
memmove(&sim_isstickys[j], &sim_isstickys[j+1],
(sim_size-(j+1))*sizeof(bool));
memmove(&sim_isdirs[j], &sim_isdirs[j+1],
(sim_size-(j+1))*sizeof(bool));
if (k > j) {
k -= 1;
}
// then insert
memmove(&sim[k+1], &sim[k],
(sim_size-k)*sizeof(lfs3_size_t));
memmove(&sim_prngs[k+1], &sim_prngs[k],
(sim_size-k)*sizeof(uint32_t));
memmove(&sim_isstickys[k+1], &sim_isstickys[k],
(sim_size-k)*sizeof(bool));
memmove(&sim_isdirs[k+1], &sim_isdirs[k],
(sim_size-k)*sizeof(bool));
sim[k] = y;
sim_prngs[k] = wprng;
sim_isstickys[k] = sticky;
sim_isdirs[k] = dir;
}
break;
}
}
// update any related sim files
for (lfs3_size_t k = 0; k < sim_file_count; k++) {
// move source files
if (sim_files[k]->x == x) {
sim_files[k]->x = y;
// mark target files as zombied
} else if (sim_files[k]->x == y) {
sim_files[k]->zombie = true;
}
}
// toss a directory into the mix
} else if (op == 5) {
// choose a pseudo-random number
lfs3_size_t x = TEST_PRNG(&prng) % N;
for (lfs3_size_t k = 0;; k++) {
if (k >= sim_size || sim[k] >= x) {
// already seen?
if (k < sim_size && sim[k] == x) {
goto nonsense;
}
break;
}
}
// make the directory
char name[256];
sprintf(name, "batman%03x", x);
lfs3_mkdir(&lfs3, name) => 0;
// insert into our sim
for (lfs3_size_t k = 0;; k++) {
if (k >= sim_size || sim[k] >= x) {
// insert
memmove(&sim[k+1], &sim[k],
(sim_size-k)*sizeof(lfs3_size_t));
memmove(&sim_prngs[k+1], &sim_prngs[k],
(sim_size-k)*sizeof(uint32_t));
memmove(&sim_isstickys[k+1], &sim_isstickys[k],
(sim_size-k)*sizeof(bool));
memmove(&sim_isdirs[k+1], &sim_isdirs[k],
(sim_size-k)*sizeof(bool));
sim_size += 1;
sim[k] = x;
sim_prngs[k] = 0;
sim_isdirs[k] = true;
break;
}
}
// mark any related sim files as zombied
for (lfs3_size_t k = 0; k < sim_file_count; k++) {
if (sim_files[k]->x == x) {
sim_files[k]->zombie = true;
}
}
}
// step the traversal
for (lfs3_size_t s = 0; s < STEPS; s++) {
struct lfs3_tinfo tinfo;
int err = lfs3_trv_read(&lfs3, &trv, &tinfo);
assert(!err || err == LFS3_ERR_NOENT);
// restart traversal
if (err == LFS3_ERR_NOENT) {
lfs3_trv_rewind(&lfs3, &trv) => 0;
}
}
}
lfs3_trv_close(&lfs3, &trv) => 0;
// check that disk matches our simulation
for (lfs3_size_t j = 0; j < sim_size; j++) {
char name[256];
sprintf(name, "batman%03x", sim[j]);
struct lfs3_info info;
lfs3_stat(&lfs3, name, &info) => 0;
assert(strcmp(info.name, name) == 0);
if (sim_isdirs[j]) {
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
} else if (sim_isstickys[j]) {
assert(info.type == LFS3_TYPE_STICKYNOTE);
assert(info.size == 0);
} else {
assert(info.type == LFS3_TYPE_REG);
assert(info.size == SIZE);
}
}
lfs3_dir_t dir;
lfs3_dir_open(&lfs3, &dir, "/") => 0;
struct lfs3_info info;
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, ".") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, "..") == 0);
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
for (lfs3_size_t j = 0; j < sim_size; j++) {
char name[256];
sprintf(name, "batman%03x", sim[j]);
lfs3_dir_read(&lfs3, &dir, &info) => 0;
assert(strcmp(info.name, name) == 0);
if (sim_isdirs[j]) {
assert(info.type == LFS3_TYPE_DIR);
assert(info.size == 0);
} else if (sim_isstickys[j]) {
assert(info.type == LFS3_TYPE_STICKYNOTE);
assert(info.size == 0);
} else {
assert(info.type == LFS3_TYPE_REG);
assert(info.size == SIZE);
}
}
lfs3_dir_read(&lfs3, &dir, &info) => LFS3_ERR_NOENT;
lfs3_dir_close(&lfs3, &dir) => 0;
for (lfs3_size_t j = 0; j < sim_size; j++) {
if (sim_isdirs[j]) {
char name[256];
sprintf(name, "batman%03x", sim[j]);
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name, LFS3_O_RDONLY)
=> LFS3_ERR_ISDIR;
} else {
char name[256];
sprintf(name, "batman%03x", sim[j]);
lfs3_file_t file;
lfs3_file_open(&lfs3, &file, name, LFS3_O_RDONLY) => 0;
uint32_t wprng = sim_prngs[j];
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&wprng) % 26);
}
uint8_t rbuf[SIZE];
if (sim_isstickys[j]) {
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => 0;
} else {
lfs3_file_read(&lfs3, &file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
}
lfs3_file_close(&lfs3, &file) => 0;
}
}
// check that our file handles match our simulation
for (lfs3_size_t j = 0; j < sim_file_count; j++) {
uint32_t wprng = sim_files[j]->prng;
uint8_t wbuf[SIZE];
for (lfs3_size_t j = 0; j < SIZE; j++) {
wbuf[j] = 'a' + (TEST_PRNG(&wprng) % 26);
}
lfs3_file_rewind(&lfs3, &sim_files[j]->file) => 0;
uint8_t rbuf[SIZE];
lfs3_file_read(&lfs3, &sim_files[j]->file, rbuf, SIZE) => SIZE;
assert(memcmp(rbuf, wbuf, SIZE) == 0);
}
// clean up sim/lfs3
free(sim);
free(sim_prngs);
free(sim_isstickys);
free(sim_isdirs);
for (lfs3_size_t j = 0; j < sim_file_count; j++) {
lfs3_file_close(&lfs3, &sim_files[j]->file) => 0;
free(sim_files[j]);
}
free(sim_files);
lfs3_unmount(&lfs3) => 0;
'''