Files
tinyusb/src/portable/renesas/rusb2/dcd_rusb2.c
2026-01-04 17:02:16 +07:00

985 lines
26 KiB
C

/*
* The MIT License (MIT)
*
* Copyright (c) 2020 Koji Kitayama
* Portions copyrighted (c) 2021 Roland Winistoerfer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUD_ENABLED && defined(TUP_USBIP_RUSB2)
#include "device/dcd.h"
#include "rusb2_common.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+
enum {
PIPE_COUNT = 10,
};
typedef struct {
void *buf; /* the start address of a transfer data buffer */
uint16_t length; /* the number of bytes in the buffer */
uint16_t remaining; /* the number of bytes remaining in the buffer */
uint8_t ep; /* an assigned endpoint address */
uint8_t ff; /* `buf` is TU_FUFO or POD */
} pipe_state_t;
typedef struct
{
pipe_state_t pipe[PIPE_COUNT];
uint8_t ep[2][16]; /* a lookup table for a pipe index from an endpoint address */
// Track whether sof has been manually enabled
bool sof_enabled;
} dcd_data_t;
static dcd_data_t _dcd;
//--------------------------------------------------------------------+
// INTERNAL OBJECT & FUNCTION DECLARATION
//--------------------------------------------------------------------+
// Transfer conditions specifiable for each pipe for most MCUs
// - Pipe 0: Control transfer with 64-byte single buffer
// - Pipes 1 and 2: Bulk or ISO
// - Pipes 3 to 5: Bulk
// - Pipes 6 to 9: Interrupt
//
// Note: for small mcu such as
// - RA2A1: only pipe 4-7 are available, and no support for ISO
static unsigned find_pipe(unsigned xfer_type) {
#if defined(BSP_MCU_GROUP_RA2A1)
const uint8_t pipe_idx_arr[4][2] = {
{ 0, 0 }, // Control
{ 0, 0 }, // Isochronous not supported
{ 4, 5 }, // Bulk
{ 6, 7 }, // Interrupt
};
#else
const uint8_t pipe_idx_arr[4][2] = {
{ 0, 0 }, // Control
{ 1, 2 }, // Isochronous
{ 1, 5 }, // Bulk
{ 6, 9 }, // Interrupt
};
#endif
// find backward since only pipe 1, 2 support ISO
const uint8_t idx_first = pipe_idx_arr[xfer_type][0];
const uint8_t idx_last = pipe_idx_arr[xfer_type][1];
for (int i = idx_last; i >= idx_first; i--) {
if (0 == _dcd.pipe[i].ep) return i;
}
return 0;
}
static volatile uint16_t* get_pipectr(rusb2_reg_t *rusb, unsigned num) {
if (num) {
return (volatile uint16_t*)&(rusb->PIPE_CTR[num - 1]);
} else {
return (volatile uint16_t*)&(rusb->DCPCTR);
}
}
static volatile reg_pipetre_t* get_pipetre(rusb2_reg_t *rusb, unsigned num) {
volatile reg_pipetre_t* tre = NULL;
if ((1 <= num) && (num <= 5)) {
tre = (volatile reg_pipetre_t*)&(rusb->PIPE_TR[num - 1].E);
}
return tre;
}
static volatile uint16_t* ep_addr_to_pipectr(uint8_t rhport, unsigned ep_addr) {
rusb2_reg_t *rusb = RUSB2_REG(rhport);
const unsigned epn = tu_edpt_number(ep_addr);
if (epn) {
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned num = _dcd.ep[dir][epn];
return get_pipectr(rusb, num);
} else {
return get_pipectr(rusb, 0);
}
}
static uint16_t edpt0_max_packet_size(rusb2_reg_t* rusb) {
return rusb->DCPMAXP_b.MXPS;
}
static uint16_t edpt_max_packet_size(rusb2_reg_t *rusb, unsigned num) {
rusb->PIPESEL = num;
return rusb->PIPEMAXP;
}
static inline void pipe_wait_for_ready(rusb2_reg_t * rusb, unsigned num) {
while ( rusb->D0FIFOSEL_b.CURPIPE != num ) {}
while ( !rusb->D0FIFOCTR_b.FRDY ) {}
}
//--------------------------------------------------------------------+
// Pipe Transfer
//--------------------------------------------------------------------+
static bool pipe0_xfer_in(rusb2_reg_t *rusb) {
pipe_state_t *pipe = &_dcd.pipe[0];
const unsigned rem = pipe->remaining;
if (!rem) {
pipe->buf = NULL;
return true;
}
const uint16_t mps = edpt0_max_packet_size(rusb);
const uint16_t len = tu_min16(mps, rem);
void *buf = pipe->buf;
if (len) {
// uint16_t fifo_sel = RUSB2_CFIFOSEL_ISEL_WRITE | FIFOSEL_BIGEND;
tu_hwfifo_access_t access_mode;
access_mode.param = (uintptr_t)rusb;
//
if (rusb2_is_highspeed_reg(rusb)) {
// fifo_sel |= RUSB2_FIFOSEL_MBW_32BIT;
access_mode.data_stride = 4u;
} else {
// fifo_sel |= RUSB2_FIFOSEL_MBW_16BIT;
access_mode.data_stride = 2u;
}
// rusb->CFIFOSEL = fifo_sel;
// while (0 == (rusb->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE)) {}
if (pipe->ff) {
tu_hwfifo_write_from_fifo(&rusb->CFIFO, (tu_fifo_t *)buf, len, &access_mode);
} else {
tu_hwfifo_write(&rusb->CFIFO, buf, len, &access_mode);
pipe->buf = (uint8_t *)buf + len;
}
}
if (len < mps) {
rusb->CFIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk;
}
pipe->remaining = rem - len;
return false;
}
static bool pipe0_xfer_out(rusb2_reg_t *rusb) {
pipe_state_t *pipe = &_dcd.pipe[0];
const unsigned rem = pipe->remaining;
const uint16_t mps = edpt0_max_packet_size(rusb);
const uint16_t vld = rusb->CFIFOCTR_b.DTLN;
const uint16_t len = tu_min16(tu_min16(rem, mps), vld);
void *buf = pipe->buf;
if (len) {
tu_hwfifo_access_t access_mode = {.data_stride = (rusb2_is_highspeed_reg(rusb) ? 4u : 2u),
.param = (uintptr_t)rusb};
if (pipe->ff) {
tu_hwfifo_read_to_fifo(&rusb->CFIFO, (tu_fifo_t *)buf, len, &access_mode);
} else {
tu_hwfifo_read(&rusb->CFIFO, buf, len, &access_mode);
pipe->buf = (uint8_t *)buf + len;
}
}
if (len < mps) {
rusb->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk;
}
pipe->remaining = rem - len;
if ((len < mps) || (rem == len)) {
pipe->buf = NULL;
return true;
}
return false;
}
static bool pipe_xfer_in(rusb2_reg_t* rusb, unsigned num)
{
pipe_state_t *pipe = &_dcd.pipe[num];
const unsigned rem = pipe->remaining;
if (!rem) {
pipe->buf = NULL;
return true;
}
const uint16_t fifo_sel = num | FIFOSEL_BIGEND;
const bool is_highspeed = rusb2_is_highspeed_reg(rusb);
if (is_highspeed) {
rusb->D0FIFOSEL = fifo_sel | RUSB2_FIFOSEL_MBW_32BIT;
} else {
rusb->D0FIFOSEL = fifo_sel | RUSB2_FIFOSEL_MBW_16BIT;
}
const uint16_t mps = edpt_max_packet_size(rusb, num);
pipe_wait_for_ready(rusb, num);
uint16_t len = tu_min16(rem, mps);
void *buf = pipe->buf;
if (len) {
tu_hwfifo_access_t access_mode = {.data_stride = (rusb2_is_highspeed_reg(rusb) ? 4u : 2u),
.param = (uintptr_t)rusb};
if (pipe->ff) {
tu_hwfifo_write_from_fifo(&rusb->D0FIFO, (tu_fifo_t *)buf, len, &access_mode);
} else {
tu_hwfifo_write(&rusb->D0FIFO, buf, len, &access_mode);
pipe->buf = (uint8_t *)buf + len;
}
}
if (len < mps) {
rusb->D0FIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk;
}
rusb->D0FIFOSEL = 0;
while (rusb->D0FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */
pipe->remaining = rem - len;
return false;
}
static bool pipe_xfer_out(rusb2_reg_t* rusb, unsigned num)
{
pipe_state_t *pipe = &_dcd.pipe[num];
const uint16_t rem = pipe->remaining;
uint16_t fifo_sel = num | FIFOSEL_BIGEND;
if (rusb2_is_highspeed_reg(rusb)) {
fifo_sel |= RUSB2_FIFOSEL_MBW_32BIT;
} else {
fifo_sel |= RUSB2_FIFOSEL_MBW_16BIT;
}
rusb->D0FIFOSEL = fifo_sel;
const uint16_t mps = edpt_max_packet_size(rusb, num);
pipe_wait_for_ready(rusb, num);
const uint16_t vld = rusb->D0FIFOCTR_b.DTLN;
const uint16_t len = tu_min16(tu_min16(rem, mps), vld);
void *buf = pipe->buf;
if (len) {
tu_hwfifo_access_t access_mode = {.data_stride = (rusb2_is_highspeed_reg(rusb) ? 4u : 2u),
.param = (uintptr_t)rusb};
if (pipe->ff) {
tu_hwfifo_read_to_fifo(&rusb->D0FIFO, (tu_fifo_t *)buf, len, &access_mode);
} else {
tu_hwfifo_read(&rusb->D0FIFO, buf, len, &access_mode);
pipe->buf = (uint8_t *)buf + len;
}
}
if (len < mps) {
rusb->D0FIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk;
}
rusb->D0FIFOSEL = 0;
while (rusb->D0FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */
pipe->remaining = rem - len;
if ((len < mps) || (rem == len)) {
pipe->buf = NULL;
return NULL != buf;
}
return false;
}
static void process_setup_packet(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
if (0 == (rusb->INTSTS0 & RUSB2_INTSTS0_VALID_Msk)) return;
rusb->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk;
uint16_t setup_packet[4] = {
tu_htole16(rusb->USBREQ),
tu_htole16(rusb->USBVAL),
tu_htole16(rusb->USBINDX),
tu_htole16(rusb->USBLENG)
};
rusb->INTSTS0 = ~((uint16_t) RUSB2_INTSTS0_VALID_Msk);
dcd_event_setup_received(rhport, (const uint8_t*)&setup_packet[0], true);
}
static void process_status_completion(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
uint8_t ep_addr;
/* Check the data stage direction */
if (rusb->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE) {
/* IN transfer. */
ep_addr = tu_edpt_addr(0, TUSB_DIR_IN);
} else {
/* OUT transfer. */
ep_addr = tu_edpt_addr(0, TUSB_DIR_OUT);
}
dcd_event_xfer_complete(rhport, ep_addr, 0, XFER_RESULT_SUCCESS, true);
}
static bool process_pipe0_xfer(rusb2_reg_t *rusb, int buffer_type, uint8_t ep_addr, void *buffer,
uint16_t total_bytes) {
uint16_t fifo_sel =
(rusb2_is_highspeed_reg(rusb) ? RUSB2_FIFOSEL_MBW_32BIT : RUSB2_FIFOSEL_MBW_16BIT) | FIFOSEL_BIGEND;
/* configure fifo direction and access unit settings */
if (ep_addr != 0) {
// Control IN
fifo_sel |= RUSB2_CFIFOSEL_ISEL_WRITE;
}
rusb->CFIFOSEL = fifo_sel;
while ((rusb->CFIFOSEL & RUSB2_CFIFOSEL_ISEL_WRITE) != (fifo_sel & RUSB2_CFIFOSEL_ISEL_WRITE)) {
// wait until ISEL_WRITE take effect
}
pipe_state_t *pipe = &_dcd.pipe[0];
pipe->ff = buffer_type;
pipe->length = total_bytes;
pipe->remaining = total_bytes;
if (total_bytes) {
pipe->buf = buffer;
if (ep_addr) {
/* IN */
TU_ASSERT(rusb->DCPCTR_b.BSTS && (rusb->USBREQ & 0x80));
pipe0_xfer_in(rusb);
}
rusb->DCPCTR = RUSB2_PIPE_CTR_PID_BUF;
} else {
/* ZLP */
pipe->buf = NULL;
rusb->DCPCTR = RUSB2_DCPCTR_CCPL_Msk | RUSB2_PIPE_CTR_PID_BUF;
}
return true;
}
static bool process_pipe_xfer(rusb2_reg_t* rusb, int buffer_type, uint8_t ep_addr, void* buffer, uint16_t total_bytes)
{
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned num = _dcd.ep[dir][epn];
TU_ASSERT(num);
pipe_state_t *pipe = &_dcd.pipe[num];
pipe->ff = buffer_type;
pipe->buf = buffer;
pipe->length = total_bytes;
pipe->remaining = total_bytes;
if (dir) {
/* IN */
if (total_bytes) {
pipe_xfer_in(rusb, num);
} else {
/* ZLP */
rusb->D0FIFOSEL = num;
pipe_wait_for_ready(rusb, num);
rusb->D0FIFOCTR = RUSB2_CFIFOCTR_BVAL_Msk;
rusb->D0FIFOSEL = 0;
/* if CURPIPE bits changes, check written value */
while (rusb->D0FIFOSEL_b.CURPIPE) {}
}
} else {
// OUT
volatile reg_pipetre_t *pt = get_pipetre(rusb, num);
if (pt) {
const uint16_t mps = edpt_max_packet_size(rusb, num);
volatile uint16_t *ctr = get_pipectr(rusb, num);
if (*ctr & 0x3) *ctr = RUSB2_PIPE_CTR_PID_NAK;
pt->TRE = TU_BIT(8);
pt->TRN = (total_bytes + mps - 1) / mps;
pt->TRENB = 1;
*ctr = RUSB2_PIPE_CTR_PID_BUF;
}
}
// TU_LOG2("X %x %d %d\r\n", ep_addr, total_bytes, buffer_type);
return true;
}
static bool process_edpt_xfer(rusb2_reg_t* rusb, int buffer_type, uint8_t ep_addr, void* buffer, uint16_t total_bytes)
{
const unsigned epn = tu_edpt_number(ep_addr);
if (0 == epn) {
return process_pipe0_xfer(rusb, buffer_type, ep_addr, buffer, total_bytes);
} else {
return process_pipe_xfer(rusb, buffer_type, ep_addr, buffer, total_bytes);
}
}
static void process_pipe0_bemp(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
bool completed = pipe0_xfer_in(rusb);
if (completed) {
pipe_state_t *pipe = &_dcd.pipe[0];
dcd_event_xfer_complete(rhport, tu_edpt_addr(0, TUSB_DIR_IN),
pipe->length, XFER_RESULT_SUCCESS, true);
}
}
static void process_pipe_brdy(uint8_t rhport, unsigned num)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
pipe_state_t *pipe = &_dcd.pipe[num];
const unsigned dir = tu_edpt_dir(pipe->ep);
bool completed;
if (dir) {
/* IN */
completed = pipe_xfer_in(rusb, num);
} else {
// OUT
if (num) {
completed = pipe_xfer_out(rusb, num);
} else {
completed = pipe0_xfer_out(rusb);
}
}
if (completed) {
dcd_event_xfer_complete(rhport, pipe->ep,
pipe->length - pipe->remaining,
XFER_RESULT_SUCCESS, true);
// TU_LOG1("C %d %d\r\n", num, pipe->length - pipe->remaining);
}
}
static void process_bus_reset(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
rusb->BEMPENB = 1;
rusb->BRDYENB = 1;
rusb->CFIFOCTR = RUSB2_CFIFOCTR_BCLR_Msk;
rusb->D0FIFOSEL = 0;
while (rusb->D0FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */
rusb->D1FIFOSEL = 0;
while (rusb->D1FIFOSEL_b.CURPIPE) {} /* if CURPIPE bits changes, check written value */
volatile uint16_t *ctr = (volatile uint16_t*)((uintptr_t) (&rusb->PIPE_CTR[0]));
volatile uint16_t *tre = (volatile uint16_t*)((uintptr_t) (&rusb->PIPE_TR[0].E));
for (int i = 1; i <= 5; ++i) {
rusb->PIPESEL = i;
rusb->PIPECFG = 0;
*ctr = RUSB2_PIPE_CTR_ACLRM_Msk;
*ctr = 0;
++ctr;
*tre = TU_BIT(8);
tre += 2;
}
for (int i = 6; i <= 9; ++i) {
rusb->PIPESEL = i;
rusb->PIPECFG = 0;
*ctr = RUSB2_PIPE_CTR_ACLRM_Msk;
*ctr = 0;
++ctr;
}
tu_varclr(&_dcd);
TU_LOG3("Bus reset, RHST = %u\r\n", rusb->DVSTCTR0_b.RHST);
tusb_speed_t speed;
switch(rusb->DVSTCTR0 & RUSB2_DVSTCTR0_RHST_Msk) {
case RUSB2_DVSTCTR0_RHST_LS:
speed = TUSB_SPEED_LOW;
break;
case RUSB2_DVSTCTR0_RHST_FS:
speed = TUSB_SPEED_FULL;
break;
case RUSB2_DVSTCTR0_RHST_HS:
speed = TUSB_SPEED_HIGH;
break;
default:
TU_ASSERT(false, );
}
dcd_event_bus_reset(rhport, speed, true);
}
static void process_set_address(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
const uint16_t addr = rusb->USBADDR_b.USBADDR;
if (!addr) {
return;
}
const tusb_control_request_t setup_packet = {
#if defined(__CCRX__)
.bmRequestType = { 0 }, /* Note: CCRX needs the braces over this struct member */
#else
.bmRequestType = 0,
#endif
.bRequest = TUSB_REQ_SET_ADDRESS,
.wValue = addr,
.wIndex = 0,
.wLength = 0,
};
dcd_event_setup_received(rhport, (const uint8_t *) &setup_packet, true);
}
/*------------------------------------------------------------------*/
/* Device API
*------------------------------------------------------------------*/
#if 0 // previously present in the rx driver before generalization
static uint32_t disable_interrupt(void)
{
uint32_t pswi;
#if defined(__CCRX__)
pswi = get_psw() & 0x010000;
clrpsw_i();
#else
pswi = __builtin_rx_mvfc(0) & 0x010000;
__builtin_rx_clrpsw('I');
#endif
return pswi;
}
static void enable_interrupt(uint32_t pswi)
{
#if defined(__CCRX__)
set_psw(get_psw() | pswi);
#else
__builtin_rx_mvtc(0, __builtin_rx_mvfc(0) | pswi);
#endif
}
#endif
bool dcd_init(uint8_t rhport, const tusb_rhport_init_t* rh_init) {
(void) rh_init;
rusb2_reg_t* rusb = RUSB2_REG(rhport);
rusb2_module_start(rhport, true);
// We disable SOF for now until needed later on.
// Since TinyUSB doesn't use SOF for now, and this interrupt often (1ms interval)
_dcd.sof_enabled = false;
#ifdef RUSB2_SUPPORT_HIGHSPEED
if ( rusb2_is_highspeed_rhport(rhport) ) {
rusb->SYSCFG_b.HSE = 1;
// leave CLKSEL as default (0x11) 24Mhz
// Power and reset UTMI Phy
uint16_t physet = (rusb->PHYSET | RUSB2_PHYSET_PLLRESET_Msk) & ~RUSB2_PHYSET_DIRPD_Msk;
rusb->PHYSET = physet;
R_BSP_SoftwareDelay((uint32_t) 1, BSP_DELAY_UNITS_MILLISECONDS);
rusb->PHYSET_b.PLLRESET = 0;
// set UTMI to operating mode and wait for PLL lock confirmation
rusb->LPSTS_b.SUSPENDM = 1;
while (!rusb->PLLSTA_b.PLLLOCK) {}
rusb->SYSCFG_b.DRPD = 0;
rusb->SYSCFG_b.USBE = 1;
// Set CPU bus wait time (fine tunne later)
// rusb2->BUSWAIT |= 0x0F00U;
rusb->PHYSET_b.REPSEL = 1;
} else
#endif
{
rusb->SYSCFG_b.SCKE = 1;
while (!rusb->SYSCFG_b.SCKE) {}
rusb->SYSCFG_b.DRPD = 0;
rusb->SYSCFG_b.DCFM = 0;
rusb->SYSCFG_b.USBE = 1;
// MCU specific PHY init
rusb2_phy_init();
rusb->PHYSLEW = 0x5;
rusb->DPUSR0R_FS_b.FIXPHY0 = 0u; /* USB_BASE Transceiver Output fixed */
}
/* Setup default control pipe */
rusb->DCPMAXP_b.MXPS = 64;
rusb->INTSTS0 = 0;
rusb->INTENB0 = RUSB2_INTSTS0_VBINT_Msk | RUSB2_INTSTS0_BRDY_Msk | RUSB2_INTSTS0_BEMP_Msk |
RUSB2_INTSTS0_DVST_Msk | RUSB2_INTSTS0_CTRT_Msk | (_dcd.sof_enabled ? RUSB2_INTSTS0_SOFR_Msk : 0) |
RUSB2_INTSTS0_RESM_Msk;
rusb->BEMPENB = 1;
rusb->BRDYENB = 1;
// If VBUS (detect) pin is not used, application need to call tud_connect() manually after tud_init()
if (rusb->INTSTS0_b.VBSTS) {
dcd_connect(rhport);
}
return true;
}
void dcd_int_enable(uint8_t rhport) {
rusb2_int_enable(rhport);
}
void dcd_int_disable(uint8_t rhport) {
rusb2_int_disable(rhport);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr) {
(void) rhport;
(void) dev_addr;
}
void dcd_remote_wakeup(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
rusb->DVSTCTR0_b.WKUP = 1;
}
void dcd_connect(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
if ( rusb2_is_highspeed_rhport(rhport)) {
rusb->SYSCFG_b.CNEN = 1;
}
rusb->SYSCFG_b.DPRPU = 1;
}
void dcd_disconnect(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
rusb->SYSCFG_b.DPRPU = 0;
}
void dcd_sof_enable(uint8_t rhport, bool en)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
_dcd.sof_enabled = en;
rusb->INTENB0_b.SOFE = en ? 1: 0;
}
//--------------------------------------------------------------------+
// Endpoint API
//--------------------------------------------------------------------+
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const * ep_desc)
{
(void)rhport;
rusb2_reg_t * rusb = RUSB2_REG(rhport);
const unsigned ep_addr = ep_desc->bEndpointAddress;
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned xfer = ep_desc->bmAttributes.xfer;
const unsigned mps = tu_edpt_packet_size(ep_desc);
if (xfer == TUSB_XFER_ISOCHRONOUS) {
// Fullspeed ISO is limit to 256 bytes
if ( !rusb2_is_highspeed_rhport(rhport) && mps > 256) {
return false;
}
}
const unsigned num = find_pipe(xfer);
TU_ASSERT(num);
_dcd.pipe[num].ep = ep_addr;
_dcd.ep[dir][epn] = num;
/* setup pipe */
dcd_int_disable(rhport);
if ( rusb2_is_highspeed_rhport(rhport) ) {
// FIXME shouldn't be after pipe selection and config, also the BUFNMB should be changed
// depending on the allocation scheme
rusb->PIPEBUF = 0x7C08;
}
rusb->PIPESEL = num;
rusb->PIPEMAXP = mps;
volatile uint16_t *ctr = get_pipectr(rusb, num);
*ctr = RUSB2_PIPE_CTR_ACLRM_Msk | RUSB2_PIPE_CTR_SQCLR_Msk;
*ctr = 0;
unsigned cfg = (dir << 4) | epn;
if (xfer == TUSB_XFER_BULK) {
cfg |= (RUSB2_PIPECFG_TYPE_BULK | RUSB2_PIPECFG_SHTNAK_Msk | RUSB2_PIPECFG_DBLB_Msk);
} else if (xfer == TUSB_XFER_INTERRUPT) {
cfg |= RUSB2_PIPECFG_TYPE_INT;
} else {
cfg |= (RUSB2_PIPECFG_TYPE_ISO | RUSB2_PIPECFG_DBLB_Msk);
}
rusb->PIPECFG = cfg;
rusb->BRDYSTS = 0x3FFu ^ TU_BIT(num);
rusb->BRDYENB |= TU_BIT(num);
if (dir || (xfer != TUSB_XFER_BULK)) {
*ctr = RUSB2_PIPE_CTR_PID_BUF;
}
// TU_LOG1("O %d %x %x\r\n", rusb->PIPESEL, rusb->PIPECFG, rusb->PIPEMAXP);
dcd_int_enable(rhport);
return true;
}
void dcd_edpt_close_all(uint8_t rhport)
{
unsigned i = TU_ARRAY_SIZE(_dcd.pipe);
dcd_int_disable(rhport);
while (--i) { /* Close all pipes except 0 */
const unsigned ep_addr = _dcd.pipe[i].ep;
if (!ep_addr) continue;
dcd_edpt_close(rhport, ep_addr);
}
dcd_int_enable(rhport);
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr)
{
rusb2_reg_t * rusb = RUSB2_REG(rhport);
const unsigned epn = tu_edpt_number(ep_addr);
const unsigned dir = tu_edpt_dir(ep_addr);
const unsigned num = _dcd.ep[dir][epn];
rusb->BRDYENB &= ~TU_BIT(num);
volatile uint16_t *ctr = get_pipectr(rusb, num);
*ctr = 0;
rusb->PIPESEL = num;
rusb->PIPECFG = 0;
_dcd.pipe[num].ep = 0;
_dcd.ep[dir][epn] = 0;
}
#if 0
bool dcd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size) {
(void)rhport;
(void)ep_addr;
(void)largest_packet_size;
return false;
}
bool dcd_edpt_iso_activate(uint8_t rhport, const tusb_desc_endpoint_t *desc_ep) {
(void)rhport;
(void)desc_ep;
return false;
}
#endif
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t * buffer, uint16_t total_bytes, bool is_isr)
{
(void) is_isr;
rusb2_reg_t* rusb = RUSB2_REG(rhport);
dcd_int_disable(rhport);
bool r = process_edpt_xfer(rusb, 0, ep_addr, buffer, total_bytes);
dcd_int_enable(rhport);
return r;
}
bool dcd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t * ff, uint16_t total_bytes, bool is_isr)
{
(void) is_isr;
// USB buffers always work in bytes so to avoid unnecessary divisions we demand item_size = 1
rusb2_reg_t* rusb = RUSB2_REG(rhport);
dcd_int_disable(rhport);
bool r = process_edpt_xfer(rusb, 1, ep_addr, ff, total_bytes);
dcd_int_enable(rhport);
return r;
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr)
{
volatile uint16_t *ctr = ep_addr_to_pipectr(rhport, ep_addr);
if (!ctr) {
return;
}
dcd_int_disable(rhport);
const uint32_t pid = *ctr & 0x3;
*ctr = pid | RUSB2_PIPE_CTR_PID_STALL;
*ctr = RUSB2_PIPE_CTR_PID_STALL;
dcd_int_enable(rhport);
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr)
{
rusb2_reg_t * rusb = RUSB2_REG(rhport);
volatile uint16_t *ctr = ep_addr_to_pipectr(rhport, ep_addr);
if (!ctr) {
return;
}
dcd_int_disable(rhport);
*ctr = RUSB2_PIPE_CTR_SQCLR_Msk;
if (tu_edpt_dir(ep_addr)) { /* IN */
*ctr = RUSB2_PIPE_CTR_PID_BUF;
} else {
const unsigned num = _dcd.ep[0][tu_edpt_number(ep_addr)];
rusb->PIPESEL = num;
if (rusb->PIPECFG_b.TYPE != 1) {
*ctr = RUSB2_PIPE_CTR_PID_BUF;
}
}
dcd_int_enable(rhport);
}
//--------------------------------------------------------------------+
// ISR
//--------------------------------------------------------------------+
#if defined(__CCRX__)
TU_ATTR_ALWAYS_INLINE static inline unsigned __builtin_ctz(unsigned int value) {
unsigned int count = 0;
while ((value & 1) == 0) {
value >>= 1;
count++;
}
return count;
}
#endif
void dcd_int_handler(uint8_t rhport)
{
rusb2_reg_t* rusb = RUSB2_REG(rhport);
uint16_t is0 = rusb->INTSTS0;
/* clear active bits except VALID (don't write 0 to already cleared bits according to the HW manual) */
rusb->INTSTS0 = ~((RUSB2_INTSTS0_CTRT_Msk | RUSB2_INTSTS0_DVST_Msk | RUSB2_INTSTS0_SOFR_Msk |
RUSB2_INTSTS0_RESM_Msk | RUSB2_INTSTS0_VBINT_Msk) & is0) | RUSB2_INTSTS0_VALID_Msk;
// VBUS changes
if ( is0 & RUSB2_INTSTS0_VBINT_Msk ) {
if ( rusb->INTSTS0_b.VBSTS ) {
dcd_connect(rhport);
} else {
dcd_disconnect(rhport);
}
}
// Resumed
if ( is0 & RUSB2_INTSTS0_RESM_Msk ) {
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
if (!_dcd.sof_enabled) {
rusb->INTENB0_b.SOFE = 0;
}
}
// SOF received
if ( (is0 & RUSB2_INTSTS0_SOFR_Msk) && rusb->INTENB0_b.SOFE ) {
// USBD will exit suspended mode when SOF event is received
const uint32_t frame = rusb->FRMNUM_b.FRNM;
dcd_event_sof(rhport, frame, true);
if (!_dcd.sof_enabled) {
rusb->INTENB0_b.SOFE = 0;
}
}
// Device state changes
if ( is0 & RUSB2_INTSTS0_DVST_Msk ) {
switch (is0 & RUSB2_INTSTS0_DVSQ_Msk) {
case RUSB2_INTSTS0_DVSQ_STATE_DEF:
process_bus_reset(rhport);
break;
case RUSB2_INTSTS0_DVSQ_STATE_ADDR:
process_set_address(rhport);
break;
case RUSB2_INTSTS0_DVSQ_STATE_SUSP0:
case RUSB2_INTSTS0_DVSQ_STATE_SUSP1:
case RUSB2_INTSTS0_DVSQ_STATE_SUSP2:
case RUSB2_INTSTS0_DVSQ_STATE_SUSP3:
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
if (!_dcd.sof_enabled) {
rusb->INTENB0_b.SOFE = 1;
}
default: break;
}
}
// if ( is0 & RUSB2_INTSTS0_NRDY_Msk ) {
// rusb->NRDYSTS = 0;
// }
// Control transfer stage changes
if ( is0 & RUSB2_INTSTS0_CTRT_Msk ) {
if ( is0 & RUSB2_INTSTS0_CTSQ_CTRL_RDATA ) {
/* A setup packet has been received. */
process_setup_packet(rhport);
} else if ( 0 == (is0 & RUSB2_INTSTS0_CTSQ_Msk) ) {
/* A ZLP has been sent/received. */
process_status_completion(rhport);
}
}
// Buffer empty
if ( is0 & RUSB2_INTSTS0_BEMP_Msk ) {
const uint16_t s = rusb->BEMPSTS;
rusb->BEMPSTS = 0;
if ( s & 1 ) {
process_pipe0_bemp(rhport);
}
}
// Buffer ready
if ( is0 & RUSB2_INTSTS0_BRDY_Msk ) {
const unsigned m = rusb->BRDYENB;
unsigned s = rusb->BRDYSTS & m;
/* clear active bits (don't write 0 to already cleared bits according to the HW manual) */
rusb->BRDYSTS = ~s;
while (s) {
const unsigned num = __builtin_ctz(s);
process_pipe_brdy(rhport, num);
s &= ~TU_BIT(num);
}
}
}
#endif