Merge pull request #3461 from hathach/edpt_stream-remove-nofifo-mode

remove no-fifo mode in edpt stream API
This commit is contained in:
Ha Thach
2026-01-14 14:32:25 +07:00
committed by GitHub
6 changed files with 211 additions and 216 deletions

View File

@ -315,7 +315,7 @@ jobs:
run: python3 tools/get_deps.py $BUILD_ARGS
- name: Build
run: python3 tools/build.py -j 4 --toolchain iar $BUILD_ARGS
run: python3 tools/build.py --toolchain iar $BUILD_ARGS
- name: Test on actual hardware (hardware in the loop)
run: python3 test/hil/hil_test.py hfp.json

View File

@ -40,36 +40,33 @@ typedef struct {
uint8_t rhport;
uint8_t itf_num;
#if CFG_TUD_VENDOR_TXRX_BUFFERED
/*------------- From this point, data is not cleared by bus reset -------------*/
struct {
tu_edpt_stream_t tx;
tu_edpt_stream_t rx;
#if CFG_TUD_VENDOR_TX_BUFSIZE > 0
uint8_t tx_ff_buf[CFG_TUD_VENDOR_TX_BUFSIZE];
tu_edpt_stream_t tx_stream;
tu_edpt_stream_t rx_stream;
uint8_t tx_ff_buf[CFG_TUD_VENDOR_TX_BUFSIZE];
uint8_t rx_ff_buf[CFG_TUD_VENDOR_RX_BUFSIZE];
#else
uint8_t ep_in;
uint8_t ep_out;
uint16_t ep_in_mps;
uint16_t ep_out_mps;
#endif
#if CFG_TUD_VENDOR_RX_BUFSIZE > 0
uint8_t rx_ff_buf[CFG_TUD_VENDOR_RX_BUFSIZE];
#endif
} stream;
} vendord_interface_t;
#define ITF_MEM_RESET_SIZE (offsetof(vendord_interface_t, itf_num) + sizeof(((vendord_interface_t *)0)->itf_num))
#if CFG_TUD_VENDOR_TXRX_BUFFERED
#define ITF_MEM_RESET_SIZE (offsetof(vendord_interface_t, itf_num) + TU_FIELD_SIZE(vendord_interface_t, itf_num))
#else
#define ITF_MEM_RESET_SIZE sizeof(vendord_interface_t)
#endif
static vendord_interface_t _vendord_itf[CFG_TUD_VENDOR];
#if CFG_TUD_EDPT_DEDICATED_HWFIFO == 0 || CFG_TUD_VENDOR_RX_BUFSIZE == 0
// Skip local EP buffer if dedicated hw FIFO is supported or no fifo mode
#if CFG_TUD_EDPT_DEDICATED_HWFIFO == 0 || !CFG_TUD_VENDOR_TXRX_BUFFERED
typedef struct {
// Skip local EP buffer if dedicated hw FIFO is supported
#if CFG_TUD_EDPT_DEDICATED_HWFIFO == 0 || CFG_TUD_VENDOR_RX_BUFSIZE == 0
TUD_EPBUF_DEF(epout, CFG_TUD_VENDOR_EPSIZE);
#endif
// Skip local EP buffer if dedicated hw FIFO is supported
#if CFG_TUD_EDPT_DEDICATED_HWFIFO == 0
TUD_EPBUF_DEF(epin, CFG_TUD_VENDOR_EPSIZE);
#endif
} vendord_epbuf_t;
CFG_TUD_MEM_SECTION static vendord_epbuf_t _vendord_epbuf[CFG_TUD_VENDOR];
@ -78,7 +75,6 @@ CFG_TUD_MEM_SECTION static vendord_epbuf_t _vendord_epbuf[CFG_TUD_VENDOR];
//--------------------------------------------------------------------+
// Weak stubs: invoked if no strong implementation is available
//--------------------------------------------------------------------+
TU_ATTR_WEAK void tud_vendor_rx_cb(uint8_t idx, const uint8_t *buffer, uint32_t bufsize) {
(void)idx;
(void)buffer;
@ -93,40 +89,44 @@ TU_ATTR_WEAK void tud_vendor_tx_cb(uint8_t idx, uint32_t sent_bytes) {
//--------------------------------------------------------------------
// Application API
//--------------------------------------------------------------------
bool tud_vendor_n_mounted(uint8_t idx) {
TU_VERIFY(idx < CFG_TUD_VENDOR);
vendord_interface_t *p_itf = &_vendord_itf[idx];
return p_itf->stream.rx.ep_addr || p_itf->stream.tx.ep_addr;
#if CFG_TUD_VENDOR_TXRX_BUFFERED
return (p_itf->rx_stream.ep_addr != 0) || (p_itf->tx_stream.ep_addr != 0);
#else
return (p_itf->ep_out != 0) || (p_itf->ep_in != 0);
#endif
}
//--------------------------------------------------------------------+
// Read API
//--------------------------------------------------------------------+
#if CFG_TUD_VENDOR_RX_BUFSIZE > 0
#if CFG_TUD_VENDOR_TXRX_BUFFERED
uint32_t tud_vendor_n_available(uint8_t idx) {
TU_VERIFY(idx < CFG_TUD_VENDOR, 0);
vendord_interface_t *p_itf = &_vendord_itf[idx];
return tu_edpt_stream_read_available(&p_itf->stream.rx);
return tu_edpt_stream_read_available(&p_itf->rx_stream);
}
bool tud_vendor_n_peek(uint8_t idx, uint8_t *u8) {
TU_VERIFY(idx < CFG_TUD_VENDOR);
vendord_interface_t *p_itf = &_vendord_itf[idx];
return tu_edpt_stream_peek(&p_itf->stream.rx, u8);
return tu_edpt_stream_peek(&p_itf->rx_stream, u8);
}
uint32_t tud_vendor_n_read(uint8_t idx, void *buffer, uint32_t bufsize) {
TU_VERIFY(idx < CFG_TUD_VENDOR, 0);
vendord_interface_t *p_itf = &_vendord_itf[idx];
return tu_edpt_stream_read(&p_itf->stream.rx, buffer, bufsize);
return tu_edpt_stream_read(&p_itf->rx_stream, buffer, bufsize);
}
void tud_vendor_n_read_flush(uint8_t idx) {
TU_VERIFY(idx < CFG_TUD_VENDOR, );
vendord_interface_t *p_itf = &_vendord_itf[idx];
tu_edpt_stream_clear(&p_itf->stream.rx);
tu_edpt_stream_read_xfer(&p_itf->stream.rx);
tu_edpt_stream_clear(&p_itf->rx_stream);
tu_edpt_stream_read_xfer(&p_itf->rx_stream);
}
#endif
@ -134,9 +134,17 @@ void tud_vendor_n_read_flush(uint8_t idx) {
bool tud_vendor_n_read_xfer(uint8_t idx) {
TU_VERIFY(idx < CFG_TUD_VENDOR);
vendord_interface_t *p_itf = &_vendord_itf[idx];
return tu_edpt_stream_read_xfer(&p_itf->stream.rx);
#if CFG_TUD_VENDOR_TXRX_BUFFERED
return tu_edpt_stream_read_xfer(&p_itf->rx_stream);
#else
// Non-FIFO mode
TU_VERIFY(usbd_edpt_claim(p_itf->rhport, p_itf->ep_out));
return usbd_edpt_xfer(p_itf->rhport, p_itf->ep_out, _vendord_epbuf[idx].epout, CFG_TUD_VENDOR_EPSIZE, false);
#endif
}
#endif
#endif
//--------------------------------------------------------------------+
@ -145,26 +153,45 @@ bool tud_vendor_n_read_xfer(uint8_t idx) {
uint32_t tud_vendor_n_write(uint8_t idx, const void *buffer, uint32_t bufsize) {
TU_VERIFY(idx < CFG_TUD_VENDOR, 0);
vendord_interface_t *p_itf = &_vendord_itf[idx];
return tu_edpt_stream_write(&p_itf->stream.tx, buffer, (uint16_t)bufsize);
}
#if CFG_TUD_VENDOR_TX_BUFSIZE > 0
uint32_t tud_vendor_n_write_flush(uint8_t idx) {
TU_VERIFY(idx < CFG_TUD_VENDOR, 0);
vendord_interface_t *p_itf = &_vendord_itf[idx];
return tu_edpt_stream_write_xfer(&p_itf->stream.tx);
#if CFG_TUD_VENDOR_TXRX_BUFFERED
return tu_edpt_stream_write(&p_itf->tx_stream, buffer, (uint16_t)bufsize);
#else
// non-fifo mode: direct transfer
TU_VERIFY(usbd_edpt_claim(p_itf->rhport, p_itf->ep_in), 0);
const uint32_t xact_len = tu_min32(bufsize, CFG_TUD_VENDOR_EPSIZE);
memcpy(_vendord_epbuf[idx].epin, buffer, xact_len);
TU_ASSERT(usbd_edpt_xfer(p_itf->rhport, p_itf->ep_in, _vendord_epbuf[idx].epin, (uint16_t)xact_len, false), 0);
return xact_len;
#endif
}
uint32_t tud_vendor_n_write_available(uint8_t idx) {
TU_VERIFY(idx < CFG_TUD_VENDOR, 0);
vendord_interface_t *p_itf = &_vendord_itf[idx];
return tu_edpt_stream_write_available(&p_itf->stream.tx);
#if CFG_TUD_VENDOR_TXRX_BUFFERED
return tu_edpt_stream_write_available(&p_itf->tx_stream);
#else
// Non-FIFO mode
TU_VERIFY(p_itf->ep_in > 0, 0); // must be opened
return usbd_edpt_busy(p_itf->rhport, p_itf->ep_in) ? 0 : CFG_TUD_VENDOR_EPSIZE;
#endif
}
#if CFG_TUD_VENDOR_TXRX_BUFFERED
uint32_t tud_vendor_n_write_flush(uint8_t idx) {
TU_VERIFY(idx < CFG_TUD_VENDOR, 0);
vendord_interface_t *p_itf = &_vendord_itf[idx];
return tu_edpt_stream_write_xfer(&p_itf->tx_stream);
}
bool tud_vendor_n_write_clear(uint8_t idx) {
TU_VERIFY(idx < CFG_TUD_VENDOR, 0);
vendord_interface_t *p_itf = &_vendord_itf[idx];
tu_edpt_stream_clear(&p_itf->stream.tx);
tu_edpt_stream_clear(&p_itf->tx_stream);
return true;
}
#endif
@ -175,48 +202,37 @@ bool tud_vendor_n_write_clear(uint8_t idx) {
void vendord_init(void) {
tu_memclr(_vendord_itf, sizeof(_vendord_itf));
for(uint8_t i=0; i<CFG_TUD_VENDOR; i++) {
vendord_interface_t* p_itf = &_vendord_itf[i];
#if CFG_TUD_VENDOR_TXRX_BUFFERED
for (uint8_t i = 0; i < CFG_TUD_VENDOR; i++) {
vendord_interface_t *p_itf = &_vendord_itf[i];
#if CFG_TUD_EDPT_DEDICATED_HWFIFO
#if CFG_TUD_VENDOR_RX_BUFSIZE == 0 // non-fifo rx still need ep buffer
uint8_t *epout_buf = _vendord_epbuf[i].epout;
#else
#if CFG_TUD_EDPT_DEDICATED_HWFIFO
uint8_t *epout_buf = NULL;
#endif
uint8_t *epin_buf = NULL;
#else
uint8_t *epin_buf = NULL;
#else
uint8_t *epout_buf = _vendord_epbuf[i].epout;
uint8_t *epin_buf = _vendord_epbuf[i].epin;
#endif
#endif
#if CFG_TUD_VENDOR_RX_BUFSIZE > 0
uint8_t *rx_ff_buf = p_itf->stream.rx_ff_buf;
#else
uint8_t *rx_ff_buf = NULL;
#endif
tu_edpt_stream_init(&p_itf->stream.rx, false, false, false, rx_ff_buf, CFG_TUD_VENDOR_RX_BUFSIZE, epout_buf,
uint8_t *rx_ff_buf = p_itf->rx_ff_buf;
tu_edpt_stream_init(&p_itf->rx_stream, false, false, false, rx_ff_buf, CFG_TUD_VENDOR_RX_BUFSIZE, epout_buf,
CFG_TUD_VENDOR_EPSIZE);
#if CFG_TUD_VENDOR_TX_BUFSIZE > 0
uint8_t *tx_ff_buf = p_itf->stream.tx_ff_buf;
#else
uint8_t *tx_ff_buf = NULL;
#endif
tu_edpt_stream_init(&p_itf->stream.tx, false, true, false, tx_ff_buf, CFG_TUD_VENDOR_TX_BUFSIZE, epin_buf,
uint8_t *tx_ff_buf = p_itf->tx_ff_buf;
tu_edpt_stream_init(&p_itf->tx_stream, false, true, false, tx_ff_buf, CFG_TUD_VENDOR_TX_BUFSIZE, epin_buf,
CFG_TUD_VENDOR_EPSIZE);
}
#endif
}
bool vendord_deinit(void) {
for(uint8_t i=0; i<CFG_TUD_VENDOR; i++) {
vendord_interface_t* p_itf = &_vendord_itf[i];
tu_edpt_stream_deinit(&p_itf->stream.rx);
tu_edpt_stream_deinit(&p_itf->stream.tx);
#if CFG_TUD_VENDOR_TXRX_BUFFERED
for (uint8_t i = 0; i < CFG_TUD_VENDOR; i++) {
vendord_interface_t *p_itf = &_vendord_itf[i];
tu_edpt_stream_deinit(&p_itf->rx_stream);
tu_edpt_stream_deinit(&p_itf->tx_stream);
}
#endif
return true;
}
@ -227,11 +243,12 @@ void vendord_reset(uint8_t rhport) {
vendord_interface_t* p_itf = &_vendord_itf[i];
tu_memclr(p_itf, ITF_MEM_RESET_SIZE);
tu_edpt_stream_clear(&p_itf->stream.rx);
tu_edpt_stream_close(&p_itf->stream.rx);
tu_edpt_stream_clear(&p_itf->stream.tx);
tu_edpt_stream_close(&p_itf->stream.tx);
#if CFG_TUD_VENDOR_TXRX_BUFFERED
tu_edpt_stream_clear(&p_itf->rx_stream);
tu_edpt_stream_close(&p_itf->rx_stream);
tu_edpt_stream_clear(&p_itf->tx_stream);
tu_edpt_stream_close(&p_itf->tx_stream);
#endif
}
}
@ -241,13 +258,25 @@ static uint8_t find_vendor_itf(uint8_t ep_addr) {
const vendord_interface_t *p_vendor = &_vendord_itf[idx];
if (ep_addr == 0) {
// find unused: require both ep == 0
if (p_vendor->stream.rx.ep_addr == 0 && p_vendor->stream.tx.ep_addr == 0) {
#if CFG_TUD_VENDOR_TXRX_BUFFERED
if (p_vendor->rx_stream.ep_addr == 0 && p_vendor->tx_stream.ep_addr == 0) {
return idx;
}
} else if (ep_addr == p_vendor->stream.rx.ep_addr || ep_addr == p_vendor->stream.tx.ep_addr) {
return idx;
#else
if (p_vendor->ep_out == 0 && p_vendor->ep_in == 0) {
return idx;
}
#endif
} else {
// nothing to do
#if CFG_TUD_VENDOR_TXRX_BUFFERED
if (ep_addr == p_vendor->rx_stream.ep_addr || ep_addr == p_vendor->tx_stream.ep_addr) {
return idx;
}
#else
if (ep_addr == p_vendor->ep_out || ep_addr == p_vendor->ep_in) {
return idx;
}
#endif
}
}
return 0xff;
@ -273,28 +302,39 @@ uint16_t vendord_open(uint8_t rhport, const tusb_desc_interface_t *desc_itf, uin
const tusb_desc_endpoint_t* desc_ep = (const tusb_desc_endpoint_t*) p_desc;
TU_ASSERT(usbd_edpt_open(rhport, desc_ep));
// open endpoint stream, skip if already opened (multiple IN/OUT endpoints)
#if CFG_TUD_VENDOR_TXRX_BUFFERED
// open endpoint stream
if (tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN) {
tu_edpt_stream_t *stream_tx = &p_vendor->stream.tx;
if (stream_tx->ep_addr == 0) {
tu_edpt_stream_open(stream_tx, rhport, desc_ep);
tu_edpt_stream_write_xfer(stream_tx); // flush pending data
}
tu_edpt_stream_t *tx_stream = &p_vendor->tx_stream;
tu_edpt_stream_open(tx_stream, rhport, desc_ep);
tu_edpt_stream_write_xfer(tx_stream); // flush pending data
} else {
tu_edpt_stream_t *stream_rx = &p_vendor->stream.rx;
if (stream_rx->ep_addr == 0) {
tu_edpt_stream_open(stream_rx, rhport, desc_ep);
#if CFG_TUD_VENDOR_RX_MANUAL_XFER == 0
TU_ASSERT(tu_edpt_stream_read_xfer(stream_rx) > 0, 0); // prepare for incoming data
#endif
}
tu_edpt_stream_t *rx_stream = &p_vendor->rx_stream;
tu_edpt_stream_open(rx_stream, rhport, desc_ep);
#if CFG_TUD_VENDOR_RX_MANUAL_XFER == 0
TU_ASSERT(tu_edpt_stream_read_xfer(rx_stream) > 0, 0); // prepare for incoming data
#endif
}
#else
// Non-FIFO mode: store endpoint info
if (tu_edpt_dir(desc_ep->bEndpointAddress) == TUSB_DIR_IN) {
p_vendor->ep_in = desc_ep->bEndpointAddress;
p_vendor->ep_in_mps = tu_edpt_packet_size(desc_ep);
} else {
p_vendor->ep_out = desc_ep->bEndpointAddress;
p_vendor->ep_out_mps = tu_edpt_packet_size(desc_ep);
#if CFG_TUD_VENDOR_RX_MANUAL_XFER == 0
// Prepare for incoming data
TU_ASSERT(usbd_edpt_xfer(rhport, p_vendor->ep_out, _vendord_epbuf[idx].epout, CFG_TUD_VENDOR_EPSIZE, false), 0);
#endif
}
#endif
}
p_desc = tu_desc_next(p_desc);
}
return (uint16_t) ((uintptr_t) p_desc - (uintptr_t) desc_itf);
return (uint16_t)((uintptr_t)p_desc - (uintptr_t)desc_itf);
}
bool vendord_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint32_t xferred_bytes) {
@ -304,34 +344,36 @@ bool vendord_xfer_cb(uint8_t rhport, uint8_t ep_addr, xfer_result_t result, uint
TU_VERIFY(idx < CFG_TUD_VENDOR);
vendord_interface_t *p_vendor = &_vendord_itf[idx];
if (ep_addr == p_vendor->stream.rx.ep_addr) {
#if CFG_TUD_VENDOR_RX_BUFSIZE
// Received new data: put into stream's fifo
tu_edpt_stream_read_xfer_complete(&p_vendor->stream.rx, xferred_bytes);
#endif
// invoke callback
#if CFG_TUD_VENDOR_RX_BUFSIZE == 0
tud_vendor_rx_cb(idx, p_vendor->stream.rx.ep_buf, xferred_bytes);
#else
#if CFG_TUD_VENDOR_TXRX_BUFFERED
if (ep_addr == p_vendor->rx_stream.ep_addr) {
// Put received data to FIFO
tu_edpt_stream_read_xfer_complete(&p_vendor->rx_stream, xferred_bytes);
tud_vendor_rx_cb(idx, NULL, 0);
#endif
#if CFG_TUD_VENDOR_RX_MANUAL_XFER == 0
tu_edpt_stream_read_xfer(&p_vendor->stream.rx); // prepare next data
#endif
} else if (ep_addr == p_vendor->stream.tx.ep_addr) {
#if CFG_TUD_VENDOR_RX_MANUAL_XFER == 0
tu_edpt_stream_read_xfer(&p_vendor->rx_stream); // prepare next data
#endif
} else if (ep_addr == p_vendor->tx_stream.ep_addr) {
// Send complete
tud_vendor_tx_cb(idx, (uint16_t)xferred_bytes);
#if CFG_TUD_VENDOR_TX_BUFSIZE > 0
// try to send more if possible
if (0 == tu_edpt_stream_write_xfer(&p_vendor->stream.tx)) {
if (0 == tu_edpt_stream_write_xfer(&p_vendor->tx_stream)) {
// If there is no data left, a ZLP should be sent if xferred_bytes is multiple of EP Packet size and not zero
tu_edpt_stream_write_zlp_if_needed(&p_vendor->stream.tx, xferred_bytes);
tu_edpt_stream_write_zlp_if_needed(&p_vendor->tx_stream, xferred_bytes);
}
#endif
}
#else
if (ep_addr == p_vendor->ep_out) {
// Non-FIFO mode: invoke callback with buffer
tud_vendor_rx_cb(idx, _vendord_epbuf[idx].epout, xferred_bytes);
#if CFG_TUD_VENDOR_RX_MANUAL_XFER == 0
usbd_edpt_xfer(rhport, p_vendor->ep_out, _vendord_epbuf[idx].epout, CFG_TUD_VENDOR_EPSIZE, false);
#endif
} else if (ep_addr == p_vendor->ep_in) {
// Send complete
tud_vendor_tx_cb(idx, (uint16_t)xferred_bytes);
}
#endif
return true;
}

View File

@ -50,8 +50,14 @@ extern "C" {
#define CFG_TUD_VENDOR_TX_BUFSIZE 64
#endif
// Vendor is buffered (FIFO mode) if both TX and RX buffers are configured
// If either is 0, vendor operates in non-buffered (direct transfer) mode
#ifndef CFG_TUD_VENDOR_TXRX_BUFFERED
#define CFG_TUD_VENDOR_TXRX_BUFFERED ((CFG_TUD_VENDOR_RX_BUFSIZE > 0) && (CFG_TUD_VENDOR_TX_BUFSIZE > 0))
#endif
// Application will manually schedule RX transfer. This can be useful when using with non-fifo (buffered) mode
// i.e. CFG_TUD_VENDOR_RX_BUFSIZE = 0
// i.e. CFG_TUD_VENDOR_TXRX_BUFFERED = 0
#ifndef CFG_TUD_VENDOR_RX_MANUAL_XFER
#define CFG_TUD_VENDOR_RX_MANUAL_XFER 0
#endif
@ -63,7 +69,8 @@ extern "C" {
// Return whether the vendor interface is mounted
bool tud_vendor_n_mounted(uint8_t idx);
#if CFG_TUD_VENDOR_RX_BUFSIZE > 0
//------------- RX -------------//
#if CFG_TUD_VENDOR_TXRX_BUFFERED
// Return number of available bytes for reading
uint32_t tud_vendor_n_available(uint8_t idx);
@ -82,16 +89,17 @@ void tud_vendor_n_read_flush(uint8_t idx);
bool tud_vendor_n_read_xfer(uint8_t idx);
#endif
//------------- TX -------------//
// Write to TX FIFO. This can be buffered and not sent immediately unless buffered bytes >= USB endpoint size
uint32_t tud_vendor_n_write(uint8_t idx, const void *buffer, uint32_t bufsize);
#if CFG_TUD_VENDOR_TX_BUFSIZE > 0
// Return number of bytes available for writing in TX FIFO (or endpoint if non-buffered)
uint32_t tud_vendor_n_write_available(uint8_t idx);
#if CFG_TUD_VENDOR_TXRX_BUFFERED
// Force sending buffered data, return number of bytes sent
uint32_t tud_vendor_n_write_flush(uint8_t idx);
// Return number of bytes available for writing in TX FIFO
uint32_t tud_vendor_n_write_available(uint8_t idx);
// Clear the transmit FIFO
bool tud_vendor_n_write_clear(uint8_t idx);
#endif
@ -111,7 +119,7 @@ TU_ATTR_ALWAYS_INLINE static inline bool tud_vendor_mounted(void) {
return tud_vendor_n_mounted(0);
}
#if CFG_TUD_VENDOR_RX_BUFSIZE > 0
#if CFG_TUD_VENDOR_TXRX_BUFFERED
TU_ATTR_ALWAYS_INLINE static inline uint32_t tud_vendor_available(void) {
return tud_vendor_n_available(0);
}
@ -127,6 +135,14 @@ TU_ATTR_ALWAYS_INLINE static inline uint32_t tud_vendor_read(void *buffer, uint3
TU_ATTR_ALWAYS_INLINE static inline void tud_vendor_read_flush(void) {
tud_vendor_n_read_flush(0);
}
TU_ATTR_ALWAYS_INLINE static inline uint32_t tud_vendor_write_flush(void) {
return tud_vendor_n_write_flush(0);
}
TU_ATTR_ALWAYS_INLINE static inline bool tud_vendor_write_clear(void) {
return tud_vendor_n_write_clear(0);
}
#endif
#if CFG_TUD_VENDOR_RX_MANUAL_XFER
@ -143,20 +159,10 @@ TU_ATTR_ALWAYS_INLINE static inline uint32_t tud_vendor_write_str(const char *st
return tud_vendor_n_write_str(0, str);
}
#if CFG_TUD_VENDOR_TX_BUFSIZE > 0
TU_ATTR_ALWAYS_INLINE static inline uint32_t tud_vendor_write_flush(void) {
return tud_vendor_n_write_flush(0);
}
TU_ATTR_ALWAYS_INLINE static inline uint32_t tud_vendor_write_available(void) {
return tud_vendor_n_write_available(0);
}
TU_ATTR_ALWAYS_INLINE static inline bool tud_vendor_write_clear(void) {
return tud_vendor_n_write_clear(0);
}
#endif
// backward compatible
#define tud_vendor_flush() tud_vendor_write_flush()
@ -165,8 +171,8 @@ TU_ATTR_ALWAYS_INLINE static inline bool tud_vendor_write_clear(void) {
//--------------------------------------------------------------------+
// Invoked when received new data.
// - CFG_TUD_VENDOR_RX_BUFSIZE > 0; buffer and bufsize must not be used (both NULL,0) since data is in RX FIFO
// - CFG_TUD_VENDOR_RX_BUFSIZE = 0: Buffer and bufsize are valid
// - CFG_TUD_VENDOR_TXRX_BUFFERED = 1: buffer and bufsize must not be used (both NULL,0) since data is in RX FIFO
// - CFG_TUD_VENDOR_TXRX_BUFFERED = 0: Buffer and bufsize are valid
void tud_vendor_rx_cb(uint8_t idx, const uint8_t *buffer, uint32_t bufsize);
// Invoked when tx transfer is finished

View File

@ -37,14 +37,6 @@
// Configuration
//--------------------------------------------------------------------+
#if CFG_TUD_ENABLED && CFG_TUD_VENDOR && (CFG_TUD_VENDOR_TX_BUFSIZE == 0 || CFG_TUD_VENDOR_RX_BUFSIZE == 0)
#define CFG_TUSB_EDPT_STREAM_NO_FIFO_ENABLED 1
#endif
#ifndef CFG_TUSB_EDPT_STREAM_NO_FIFO_ENABLED
#define CFG_TUSB_EDPT_STREAM_NO_FIFO_ENABLED 0
#endif
#define TUP_USBIP_CONTROLLER_NUM 2
extern tusb_role_t _tusb_rhport_role[TUP_USBIP_CONTROLLER_NUM];

View File

@ -309,11 +309,9 @@ bool tu_edpt_stream_init(tu_edpt_stream_t *s, bool is_host, bool is_tx, bool ove
uint16_t ff_bufsize, uint8_t *ep_buf, uint16_t ep_bufsize) {
(void) is_tx;
#if CFG_TUSB_EDPT_STREAM_NO_FIFO_ENABLED == 0 // FIFO is required
if (ff_buf == NULL || ff_bufsize == 0) {
return false;
}
#endif
s->is_host = is_host;
tu_fifo_config(&s->ff, ff_buf, ff_bufsize, overwritable);
@ -411,88 +409,45 @@ uint32_t tu_edpt_stream_write_xfer(tu_edpt_stream_t *s) {
}
uint32_t tu_edpt_stream_write(tu_edpt_stream_t *s, const void *buffer, uint32_t bufsize) {
#if CFG_TUSB_EDPT_STREAM_NO_FIFO_ENABLED
if (0 == tu_fifo_depth(&s->ff)) {
// non-fifo mode: TX need ep buffer
TU_VERIFY(s->ep_buf != NULL, 0);
TU_VERIFY(stream_claim(s), 0);
uint32_t xact_len = tu_min32(bufsize, s->ep_bufsize);
memcpy(s->ep_buf, buffer, xact_len);
TU_ASSERT(stream_xfer(s, (uint16_t) xact_len), 0);
return xact_len;
} else
#endif
{
TU_VERIFY(bufsize > 0);
const uint16_t ret = tu_fifo_write_n(&s->ff, buffer, (uint16_t) bufsize);
TU_VERIFY(bufsize > 0);
const uint16_t ret = tu_fifo_write_n(&s->ff, buffer, (uint16_t) bufsize);
// flush if fifo has more than packet size or
// in rare case: fifo depth is configured too small (which never reach packet size)
if ((tu_fifo_count(&s->ff) >= s->mps) || (tu_fifo_depth(&s->ff) < s->mps)) {
tu_edpt_stream_write_xfer(s);
}
return ret;
// flush if fifo has more than packet size or
// in rare case: fifo depth is configured too small (which never reach packet size)
if ((tu_fifo_count(&s->ff) >= s->mps) || (tu_fifo_depth(&s->ff) < s->mps)) {
tu_edpt_stream_write_xfer(s);
}
return ret;
}
uint32_t tu_edpt_stream_write_available(tu_edpt_stream_t *s) {
#if CFG_TUSB_EDPT_STREAM_NO_FIFO_ENABLED
if (0 == tu_fifo_depth(&s->ff)) {
// non-fifo mode
TU_VERIFY(s->ep_addr > 0); // must be opened
bool is_busy = true;
if (s->is_host) {
#if CFG_TUH_ENABLED
is_busy = usbh_edpt_busy(s->hwid, s->ep_addr);
#endif
} else {
#if CFG_TUD_ENABLED
is_busy = usbd_edpt_busy(s->hwid, s->ep_addr);
#endif
}
return is_busy ? 0 : s->ep_bufsize;
} else
#endif
{
return (uint32_t)tu_fifo_remaining(&s->ff);
}
return (uint32_t)tu_fifo_remaining(&s->ff);
}
//--------------------------------------------------------------------+
// Stream Read
//--------------------------------------------------------------------+
uint32_t tu_edpt_stream_read_xfer(tu_edpt_stream_t *s) {
#if CFG_TUSB_EDPT_STREAM_NO_FIFO_ENABLED
if (0 == tu_fifo_depth(&s->ff)) {
// non-fifo mode: RX need ep buffer
TU_VERIFY(s->ep_buf != NULL, 0);
TU_VERIFY(stream_claim(s), 0);
TU_ASSERT(stream_xfer(s, s->ep_bufsize), 0);
return s->ep_bufsize;
} else
#endif
{
uint16_t available = tu_fifo_remaining(&s->ff);
uint16_t available = tu_fifo_remaining(&s->ff);
// Prepare for incoming data but only allow what we can store in the ring buffer.
// TODO Actually we can still carry out the transfer, keeping count of received bytes
// and slowly move it to the FIFO when read().
// This pre-check reduces endpoint claiming
TU_VERIFY(available >= s->mps);
TU_VERIFY(stream_claim(s), 0);
available = tu_fifo_remaining(&s->ff); // re-get available since fifo can be changed
// Prepare for incoming data but only allow what we can store in the ring buffer.
// TODO Actually we can still carry out the transfer, keeping count of received bytes
// and slowly move it to the FIFO when read().
// This pre-check reduces endpoint claiming
TU_VERIFY(available >= s->mps);
TU_VERIFY(stream_claim(s), 0);
available = tu_fifo_remaining(&s->ff); // re-get available since fifo can be changed
if (available >= s->mps) {
// multiple of packet size limit by ep bufsize
uint16_t count = (uint16_t) (available & ~(s->mps - 1));
count = tu_min16(count, s->ep_bufsize);
TU_ASSERT(stream_xfer(s, count), 0);
return count;
} else {
// Release endpoint since we don't make any transfer
stream_release(s);
return 0;
}
if (available >= s->mps) {
// multiple of packet size limit by ep bufsize
uint16_t count = (uint16_t) (available & ~(s->mps - 1));
count = tu_min16(count, s->ep_bufsize);
TU_ASSERT(stream_xfer(s, count), 0);
return count;
} else {
// Release endpoint since we don't make any transfer
stream_release(s);
return 0;
}
}

View File

@ -410,22 +410,22 @@ def test_device_cdc_dual_ports(board):
sizes = [32, 64, 128, 256, 512, random.randint(2000, 5000)]
def write_and_check(writer, payload):
size = len(payload)
payload_len = len(payload)
for s in ser:
s.reset_input_buffer()
rd0 = b''
rd1 = b''
offset = 0
# Write in chunks of random 1-64 bytes (device has 64-byte buffer)
while offset < size:
chunk_size = min(random.randint(1, 64), size - offset)
while offset < payload_len:
chunk_size = min(random.randint(1, 64), payload_len - offset)
ser[writer].write(payload[offset:offset + chunk_size])
ser[writer].flush()
rd0 += ser[0].read(chunk_size)
rd1 += ser[1].read(chunk_size)
offset += chunk_size
assert rd0 == payload.lower(), f'Port0 wrong data ({size}): expected {payload.lower()[:16]}... was {rd0[:16]}'
assert rd1 == payload.upper(), f'Port1 wrong data ({size}): expected {payload.upper()[:16]}... was {rd1[:16]}'
assert rd0 == payload.lower(), f'Port0 wrong data ({payload_len}): expected {payload.lower()}... was {rd0}'
assert rd1 == payload.upper(), f'Port1 wrong data ({payload_len}): expected {payload.upper()}... was {rd1}'
for size in sizes:
payload0 = rand_ascii(size)